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Abstract
This thesis presents a theoretical analysis of round complexity in cryptographic sampling protocols. We study
the following problem: how can n participants agree on a random sample from the distribution D without
anybody knowing any secret information hidden in the chosen sample? How many rounds of interactions
are needed in any such protocol? Which assumptions are required?

These questions are particularly interesting in the context of multiparty computation (MPC) due to the
extensive reliance (often unavoidable) on trusted setups such as common reference strings (CRSs). These are
samples from known distributions made public before the beginning of the protocol. Security proofs often
require CRSs to hide trapdoors. However, if these trapdoors get leaked, security is often fatally compromised.
Since trusted setups are inherently single points of failure, it is desirable to generate CRSs in a distributed
fashion using MPC protocols: as long as at least one of the participants remains honest, any trapdoor hidden
in the CRS is guaranteed to remain secret.

Previous research (Garg et al. TCC ’14) had shown that, in the setting of semi-honest security with
dishonest majority, any functionality can be implemented in two rounds. In this thesis, we show that, using
strong primitives such as indistinguishability obfuscation (iO), it is possible to build one-round sampling
protocols. We call these constructions distributed samplers. We show that these protocols can be used to
securely generate large amounts of correlated randomness with sublinear communication in a single round.

We study different ways to upgrade our semi-honest construction to active security. First, we try to
circumvent Cleve’s impossibility (STOC ’86) by allowing the adversary limited influence on the output of
the protocol: we consider the functionality FActive

D that proposes a polynomial number of different outputs
to the adversary, letting it choose its favourite one (FActive

D can still be used to generate CRSs). We show
how to implement FActive

D in one round by relying on a programmable random oracle.
In subsequent work, we show that random oracles are necessary: any actively secure distributed samplers

implementing FActive
D needs to rely on a CRS that is non-reusable, as large as a sample from D and structured

(unless D is an obliviously samplable distribution). This suggests that, without random oracles, simulation-
based, actively secure distributed samplers provide no advantage over trusted dealers.

We get around this impossibility by proposing new game-based definitions for actively secure distributed
samplers. Hardness-preserving distributed samplers allow the removal of CRSs from MPC protocols preserv-
ing at the same time the hardness of search problems. Indistinguishability-preserving distributed samplers, on
the other hand, substitute the trusted setup while preserving the functionality, however, the protocol needs
to satisfy particular conditions. We show how to build distributed samplers with the defined properties by
relying on extremely lossy functions, the subexponential security of iO and other primitives.

Next, in the context of active security with dishonest majority, we study the feasibility of protocols
producing unbiased samples with guaranteed output: to circumvent Cleve’s impossibility, we assume the
existence of an auxiliary functionality that, upon invocation, publishes a random , short k-bit string. We first
study the question when D is the uniform distribution over {0, 1}m wherem� k. This problem is called coin
tossing extension (CTE) (Bellare et al. PODC ’96). We show the existence of O(1)-round CTE constructions
producing an arbitrarily large quantity of unbiased randomness based on various assumptions (OWFs, DDH,
QR and DCR, class groups). Our most important result is an LWE-based, one-round, UC-secure, n-party
CTE protocol withstanding adaptive corruption. The protocol can be viewed as an explainable randomness
extractor. By relying on distributed samplers and the auxiliary functionality, we build one-round unbiased
sampling protocols for any distribution. Finally, we present a lower bound for statistically secure CTE with
black-box simulation: an R-round protocol can generate at most k +R ·O(log λ) bits of randomness.
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Resumé
Denne afhandling præsenterer en teoretisk analyse af runde kompleksiteten for kryptografiske sampling
protokoller. Vi studerer følgende problem: hvordan kan n deltagere blive enige om et udfald fra en fordeling
D, uden at nogen af dem kender den hemmelige information skjult i det udfald? Hvor mange runder kræver
sådan en protokol? Og hvilke antagelser er påkrævede?

Disse spørgsmål er af speciel interesse i konteksten af sikre flerpartsberegninger (fork. MPC fra det
engelske multiparty computation) grundet den udbredte (og tit uundgåelige) afhængighed på betroet op-
sætning, så som de såkaldte common reference strings (CRSer). CRSer er uddrag fra kendte fordelinger
som offentliggøres før starten af protokollen. Sikkerhedsbeviser kræver ofte at CRSer gemmer på en faldlem.
Hvis en faldlem bliver lækket, bliver sikkerhed dog ofte fatalt kompromitteret. Da betroet opsætning udgør
et “single point of failure”, er det ønskeligt at generere CRSer på en distribueret manér ved brug af MPC-
protokoller: så længe mindst en af parterne forbliver ærlig, vil enhver faldlem i CRSen forblive hemmelig.

Tidligere resultater (Garg et al. TCC ’14) har vist at enhver funktionalitet kan opnå semi-honest sikker-
hed i to runder med et uærligt flertal. I denne afhandling vil vi vise at det er muligt at bygge sampling
protokoller i en enkelt runde ved brug af stærke primitiver, som indistinguishability obfuscation (iO). Vi
kalder disse konstruktioner distributed samplers. Vi viser at disse protokoller kan bruges til at generere store
mængder korreleret tilfældighed med sublineær kommunikation i en enkelt runde.

Vi udforsker forskellige måder at opgradere vores konstruktion fra semi-honest til aktiv sikkerhed. Først
prøver vi at omgå Cleve’s umulighedsresultat (STOC ’86) ved at give fjenden begrænset indflydelse på
protokollens output: vi betragter funktionaliteten FActive

D som tilbyder fjenden et polynomielt antal udfald,
og lader den vælge sit foretrukken resultat (FActive

D kan stadig bruges til at producere CRSer). Vi viser
hvordan FActive

D kan implementeres I en runde ved brug af et programmable random oracle.
I efterfølgende arbejde viser vi at random oracles er nødvendige: enhver distributed sampler som imple-

menterer FActive
D og opnår aktiv sikkerhed skall bruge en CRS som ikke er genanvendelig med størrelsen på

et udfald fra D og er struktureret (medmindre D er en obliviously samplable fordeling). Dette foreslår at,
uden random oracles, tilbyder simulation-based aktivt sikre distributed samplere ingen fordel over en betroet
fordeler.

Vi undgår denne umulighed ved at foreslå nye spil-baserede definitioner for aktivt sikre distributed sam-
plers. Hardness-preserving distributed samplers tillader at fjerne CRSer fra MPC protokoller mens sværheden
af søge problemer vedligeholdes. Indistinguishability-preserving distributed samplers erstatter derimod be-
troet opsætning mens funktionaliteten vedligeholdes, dette kræver dog at den underliggende protokol lever op
til visse krav. Vi viser hvordan distributed samplers med de definerede egenskaber kan bygges ved extremely
lossy functions, subeksponentiel security of iO og andre primitiver.

Næst, ser vi på gennemførligheden af protokoller der producerer udfald uden bias med garanteret oputput,
i konteksten af aktiv sikkerhed med et uærligt flertal: for at omgå Cleve’s umulighedsresultat, antager vi
eksistensen af en hjælper funktionalitet, som udgiver en tilfældig kort k-bit streng når den bliver kaldt. Først
betragter vi tilfældet hvor D er den uniforme fordeling over {0, 1}m hvor m � k. Dette problem er kendt
som coin tossing extension (CTE) (Bellare et al. PODC ’96). Vi viser at O(1)-runde CTE konstruktioner
der producere arbitrært store mængder tilfældighed eksisterer under forskellige antagelser (OWFer, DDH,
QR and DCR, class groups). Vores vigtigeste resultat er en LWE-baseret, enkelt-runde, UC-sikker, n-
parts CTE prokotol, der modstår adaptive korruptioner. Ved at afhænge på distributed samplers og hjælper
funktionaliteten bygger vi et-rundes unbiased sampling protokoller for enhver fordeling. Til sidst præsenterer
vi et lower bound for statistisk sikker CTE med black-box simulering: en R-rundes protokol kan højest
genereret k +R ·O(log λ) bits af tilfældighed.
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How to read this thesis

This thesis is split in two parts. Part I presents the research question we study, explaining its importance
and embedding it into a broader cryptographic perspective. We also give a summary of the main results,
presenting them in relation to other works produced by the community. Part I terminates with an overview
of the techniques and mathematical arguments used in our research.

Part II lists the full versions of four manuscripts (three of them currently published in major IACR
conferences). These are where the results in this thesis were first presented and formalised. Except for minor
adjustments (summarised in Section 1.1.1), these manuscripts have not been edited and can be found online
on the IACR ePrint Archive.

All readers are invited to start from Chapter 1 and refer to the manuscripts when additional details or
more formal argumentations are desired (note that, sometimes, the notation in Chapter 1 differs from the one
in the manuscripts in Part II). Inexperienced readers may struggle to switch from Section 1.1 to Section 1.1.1
due to the increasing use of cryptographic jargon. For these cases, in Section 1.2.1, the thesis provides a
short, informal discussion of notation, preliminaries and basic cryptographic notions and techniques. If this
would still not suffice, we recommend checking Oded Goldreich’s Foundations of Cryptography1.

1Goldreich O. Foundations of Cryptography. Cambridge University Press; 2001.
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Chapter 1

Sampling Common Randomness in a
Single Round

1.1 The Struggle for Secure Randomness
Randomness lies at the core of cryptography. Without this, basic concepts such as privacy and authentication
would be unachievable. Encryption can be viewed as the art of hiding messages using randomness (taking
the form of cryptographic keys): an encryptor merges a message and randomness into a tight, inseparable
union, a new unpredictable object called a ciphertext. In this way, randomness protects the privacy of the
message from any curious observer receiving the ciphertext: recovering the message is possible only if we
possess (partial) knowledge of the randomness used by the encryptor. Authentication, on the other hand,
can be viewed as the art of using randomness (again, taking the form of a cryptographic key) to design
codes1 whose elements are hard to find: we can discover codewords only if we possess (partial) knowledge of
the randomness that produced the code.

Due to this tight and intrinsic connection to the world of probability and the fact that randomness
is often non-reusable, cryptographic primitives make use of large amounts of randomness in the form of
long sequences of uniform, independent, binary random variables. Generating true randomness, however,
comes at a price: commonly, using specialised hardware that measures local physical phenomena subject to
persistent, unpredictable variations. The randomness produced in this way is, however, raw: the outcomes of
the measurements are often far from the independent, uniformly distributed bits required by cryptographic
primitives. The data therefore undergoes further processing using algorithms called randomness extractors,
which condense the unpredictability of the measurements into short, uniformly random strings of bits.
The cost of this is high enough to motivate researchers into finding new, more efficient ways of generating
randomness. This led to the introduction of cryptographic primitives such as pseudorandom generators
(PRGs) and pseudorandom functions (PRFs): a short, truly random string of bits (called a seed or key) is
deterministically expanded at a low price into a longer pseudo-random string behaving at all effects as if it
was truly random2.

Common random strings and common reference strings. Although PRGs and PRFs are a significant
step forward in the study of randomness generation, they do not provide a definitive solution to the problem:
in cryptography and, in particular, in multiparty computation (MPC), randomness assumes a large variety
of shapes and only a small part of them can be reduced to individual entities locally sampling uniformly
random strings independently of their external environment. Among the most common forms are common
random strings and common reference strings (CRS). These consist of unpredictable binary strings made
public at an unspecified point in time, before all participants (often called parties or players) start running

1A code consists of a subsets of binary strings of a given length.
2No further information about the seed or key must be revealed.
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their cryptographic protocols. In the case of common random strings, the CRS is unstructured: it consists
of a uniformly random string of bits of a set length. Common reference strings are, on the other hand,
structured: they are described by arbitrary distributions. Typical examples are large RSA moduli [RSA78],
i.e. integers obtained by multiplying two random prime numbers of a set bit-length, or KZG-like CRSs
[KZG10], i.e. tuples (g, gα, gα

2

, . . . , gα
n

) where g is a high order element in a multiplicative group G and α
is an integer uniformly sampled over a finite interval.

CRSs are fundamental in cryptographic protocols, especially in the context of malicious security in the
dishonest majority case3: without them, rigorous, modular and well-established security notions such as
universal composability [Can01] would often be unachievable4 [CKL03], and the list of unknown impossi-
bilities keeps growing if we consider stronger security definitions such as adaptive corruption [IKOS10]. In
simulation-based security, CRSs are often used to backdoor the protocol execution, allowing an algorithm
called simulator to better understand and control how misbehaving participants act: we say that the proto-
col is secure if the simulator (essentially) always manages to manipulate all malicious parties into respecting
the “ideal” behaviour of the computation without being noticed5. In other words, since the behaviour of the
simulator goes unnoticed and the misbehaving parties (essentially) always fail at disrupting the protocol,
it must be that the attacks of the malicious parties (essentially) always fail even when the simulator is not
active. To summarise, CRSs and the backdoors (or trapdoors) hidden in them have allowed us to study
secure computations in a modular and scalable way for many years, sensibly contributing to the development
of cryptography in the academic and the real world. However, a natural question arises:

What happens if the CRS backdoor ends up in the wrong hands?

This usually is fatal for protocol security: backdoors often grant full control to the protocol execution.
Malicious participants would be able to learn the inputs of all honest players and deviate the protocol
execution into providing wrong outputs. Even worse, oftentimes the attacks go undetected as the simulator
was. In other words, security is often a castle built on the foundation that no ill-willed entity is able to put
its hands on the CRS trapdoor. When the foundation turns out to be wrong, the fortress crumbles.

Therefore, how do we generate CRSs in a secure way?

In the world of theoretical cryptography, the generation of a CRS is almost always entrusted to an idealised
entity called the trusted dealer or the trusted third party (TTP): an honest-by-definition entity that generates
the CRS sampling it according to the expected distribution, delivers it to all protocol participants and keeps
all additional information including any hidden backdoor secret, abstaining from using it in any context.
The issue is that this entity is very likely to not exist in the real world: aside from the fact that the common
good-and-bad dichotomy may be just a illusory human construct, we live in a world where a part of the
society believes (at conscious or unconscious level) that “maximising-personal-interests” leads to a good
approximation of “collective-good”. So, what happens if a real naïve-but-trusted dealer starts to use CRS
trapdoors for (perhaps perceived-as-good) personal interests? We have seen this many times: consider the
Snowden files or every time we hear about new mass-surveillance programs advertised as solutions against
criminality. This is especially scary if we consider that in these examples the trusted-but-not-so-trustworthy
dealer were public agencies and autocratic winds are currently on the rise all over the globe. On the other
hand, we cannot expect private companies or individuals to behave any more ethically. On the contrary,
due to the larger freedom they benefit from, the more centralised internal organisation and the limitedness
of controls, the misuse of CRS backdoors is only more likely to go unnoticed. Finally, even if a completely
honest entity existed, what would happen in case of any security breach leading to the theft of its CRS

3Malicious security refers to protocols that are secure even if a subset of participants deviates from the expected course of
the computation and starts misbehaving, possibly colluding with other participants. Dishonest majority refers to protocols that
are secure even if more than half of the participants misbehave.

4The universal composability model (UC) is an expressive security model introduced by Canetti. Unlike other common
models such as standalone security, UC-secure protocols are guaranteed to be secure even if they are run in parallel with other
computations. This is an extremely desirable property.

5The simulator achieves this by tampering with all information received by the misbehaving participants and by reading
and modifying the communications they send.
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trapdoors? This kind of attacks are becoming more and more common and they are especially concerning
due to their growing warfare usage.

So, how can we generate CRSs without relying on a single dealer?

CRSs cannot be generated using PRGs and PRFs. First of all, the outputs of PRGs and PRFs are somewhat
unstructured, whereas, as we have seen, CRSs are often structured. Even if we are dealing with common
random strings, PRGs and PRFs do not constitute a solution. In the first place, it is unclear how to generate
the public seed we would like to expand, secondly, even if we were able to magically obtain it, the output of a
PRG expansion would not look random: these primitives guarantee security only as long as the seed remains
secret (a similar argument applies to the case of PRFs). When the CRS is unstructured, applications often
rely on idealised settings such as the (programmable) random oracle model (RO)6 or on heuristics such as
using a subsequence of digits of π. Although these are considerably better solutions, they are also far from
perfect: the digits of π are clearly not random, how would we be able to compute them otherwise? Random
oracles do not exist in the real world, so they are often heuristically instantiated by relying on particular
families of (usually keyless) hash functions: Who samples the key of the hash function if it is not keyless?
Who guarantees that the hash function and its key are not backdoored? Finally, if the hash function is
keyless, as for the digits of π, we end up with a non-random CRS: we have a deterministic algorithm that
allows to compute it.

Generating structured CRSs is an even harder task. As for PRGs and PRFs, the digits of π and hash
functions lead to somewhat unstructured strings of bits. Moreover, often we cannot boil down the problem
to generating an unstructured random string and then using the latter as randomness for the distribution
describing the structured reference string. Indeed, revealing the randomness that produced the CRS often
leaks the hidden backdoor. For example, in the case of RSA moduli, the randomness used by the sampling
procedure would immediately provide the factorisation of the output; in the case of a KZG-like CRS, the
randomness would leak the value of α. If the randomness is kept secret, computing the factorisation (or the
value of α) from the CRS is considered an infeasible task. For this reason (and also their particularly nice
algebraic properties), they have been extensively used as CRS trapdoors.

Multiparty computation. A possible solution to the problems described above ismultiparty computation:
instead of delegating the generation of CRSs to trusted, perhaps-trustworthy entities, the CRS is sampled by
a cryptographic protocol between a larger number of participants, possibly including (some of) the parties
that will later on make use of produced output. In this way, it is possible to generate CRSs that are secure
even if all but one of the participants of the sampling protocol misbehave: as long as this condition is
satisfied, all backdoors will remain secret. To summarise, we do not put all eggs in one basket.

This solution raises, however, a new question.

How can we design sampling protocols that guarantee the desired level of security at a minimal cost?

This is a particularly important question also in light of the fact that some CRSs in MPC constructions are
non-reusable: for each protocol execution, the parties would need to rerun the sampling protocol to obtain
a fresh CRS. While the multiparty generation of unstructured CRSs can be easily handled in a commit-
then-reveal fashion, the situation for structured CRSs if usually much more involved. Practical solutions
are often complex, require several rounds of interaction, high communication and expensive computations.
Typical examples of this can be drawn from the vast literature on secure sampling of RSA moduli [BF97,
FMY98, PS98, Gil99, HMRT12, FLOP18, CCD+20, dMRT21, CHI+21]. It is true that the cost of sampling
protocols can often be amortised on the long run, however, this argument is based on the assumption that the
parties need to perform intense computations in the first place. This is often true for the kind of commercial
applications of MPC we often imagine: a small group of servers around the world is delegated the majority
of (secure) computations on earth. What if we instead consider more decentralised applications? What if
the parties are just end-users, normal people around the globe engaged in a network of secure information

6A random oracle consists of an entity which can be accessed from any place and at any time. On input any query, the
oracle responds with a random binary string of set length. Repeated queries are answered consistently.
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exchange? We cannot assume that people are interested in performing intense computations with the same
subsets of players on an every-day scale and on the long run. Maybe they make use of MPC protocol
rarely and every time with a different subset of participants! What if none of the end-users are happy with
just relying on the CRS produced by some external entity they have no control upon? They would need
to regenerate the CRS at each occasion! To summarise my point, expensive and slow sampling protocols
hinder the responsiveness, the fluidity, the flexibility of secure computations: before the parties can even
start computing their output, they need to get involved in a slow and costly setup protocol. This burdens
the democracy of secure computation and information over the Internet, which is then inherited in the real
world (and inequalities seem to feed on pre-existing inequalities).

The works presented in this thesis try to make a small step forward in understanding the theoretical
efficiency of sampling protocols, focusing especially on their round complexity relative to their security
guarantees. Before our research was carried out, the best known solutions were drawn from the study of
2-round MPC [GGHR14, MW16, GS17, BL18, GS18b, BL20], which trivially implies the existence of 2-round
semi-honest sampling of any CRS. The starting point of the thesis will therefore be the following question:

Is it possible to design ONE-ROUND sampling protocols?

Sampling correlated randomness. Another form of randomness commonly used in cryptography is cor-
related randomness: each participant of the MPC protocol is provided with a secret random value correlated
to those received by the other parties. Locally sampled randomness and CRSs can be viewed as extreme
cases of correlated randomness: the first one corresponds to randomness with no correlation at all (the
samples received by the parties are all independent), the other one to randomness that is fully correlated
(the sample received by any party fully determines the samples received by everybody else).

Correlated randomness is not only fundamental in one-time trusted setups such as public-key infrastruc-
tures (PKI)7, it has also become extremely popular in MPC with preprocessing [Bea92, BDOZ11, DPSZ12,
NNOB12], leading the way to the rapid growth of multiparty computation in the last decade. These pro-
tocols are composed of two phases: an input-dependent (usually lightweight) secure computation requiring
correlated randomness (usually in large amounts) and a (usually expensive) preprocessing phase where the
correlated randomness is generated in a distributed way. The former is often called the online phase, the
latter is referred as the offline phase. The type of correlated randomness required by these protocols is
usually limited in its usage: it can be used at most once. Furthermore, in many cases, MPC protocols
requires amounts of correlated randomness scaling proportionally to the size of the circuits describing the
computation (e.g. one tuple of correlated material per multiplication gate). This grows the amounts of nec-
essary preprocessed material to significant levels. For this reason, production and storage of the correlated
material are often the bottleneck of MPC protocols with preprocessing, increasing the urge for new, more
efficient solutions.

Of course, if a trusted dealer existed in the real world, we could delegate it with the task of generating
and distributing correlated randomness. This, however, not only leads to the same problems we discussed
for CRSs, it also requires significant effort at the dealer side, requiring it to constantly be online, ready to
answer the relentless requests for more correlated material from the protocol participants. Once again, it
is therefore fundamental to rely on MPC protocols that guarantee the security of the generated correlated
material even if a subset of participants misbehaves.

The pattern we saw for structured CRSs repeats again: known MPC protocols for correlated randomness
generation are often complex, require multiple rounds of interaction and high costs, both in terms of compu-
tations and communication [DPSZ12, KOS16, KPR18]. This is not only problematic in terms of amortised
efficiency, it also affects negatively the responsiveness, the fluidity, the flexibility, the democracy of MPC
protocols: before the parties can even start to compute their output, they need to get involved in an slow
and costly setup protocol.

A recent break-through on the topic was the introduction of pseudorandom correlation generators (PCGs)
and pseudorandom correlation functions (PCFs) [BCG+19b, BCG+19a, BCG+20b, BCG+20a]: these are

7In a PKI, at an unspecified point in time, before the beginning of the protocol execution, the participants are provided
with (possibly correlated) private key material.
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primitives describing how to securely obtain large amounts of correlated material by locally expanding small
correlated seeds given to the protocol participants. By relying on PCGs or PCFs it is possible to design
low-communication, low-storage offline phases for MPC protocols; computation and round complexity in
practical solutions remain, on the other hand, usually high. An exception are public-key PCFs: one-round
protocols that allow to produce large amounts of correlated randomness with sublinear communication in
the size of the outputs. At the time the works described in this thesis began, public-key PCFs were known
only for particular types of correlation, namely oblivious transfer (OT) and vector oblivious linear evaluation
(VOLE) [OSY21]. The second question we try to answer is therefore the following:

Is it possible to design PUBLIC-KEY PCFs for ANY correlation?

1.1.1 A Summary of the Main Results
This thesis encompasses the results presented in four papers:

• Damiano Abram, Peter Scholl, Sophia Yakoubov. Distributed (Correlation) Samplers: How to Remove
a Trusted Dealer in One Round. (EUROCRYPT 2022) [ASY22a, ASY22b] (see §2)

• Damiano Abram, Maciej Obremski, Peter Scholl. On the (Im)possibility of Distributed Samplers:
Lower Bounds and Party-Dynamic Constructions. (Not yet published manuscript) [AOS23] (see §3)

• Damiano Abram, Brent Waters, Mark Zhandry. Security-Preserving Distributed Samplers: How to
Generate any CRS in One Round without Random Oracles. (CRYPTO 2023) [AWZ23a, AWZ23b] (see
§4)

• Damiano Abram, Jack Doerner, Yuval Ishai, Varun Narayanan. Constant-Round Simulation-Secure
Coin Tossing Extension with Guaranteed Output. (EUROCRYPT 2024) [ADIN24a, ADIN24b] (see §5)

The full versions of these works (available on the ePrint archive [epr]) have been listed in Part II of this
thesis after applying minor adaptations (such as change of format, moving security proofs and preliminaries
from the appendices to the main body and fixing references). Due to space constraints, some of the results
of [AOS23] and [AWZ23a] were not included in the thesis. In particular, the omitted sections concern the
study of unbounded universal samplers8 [AOS23, Section 4], party-dynamic distributed samplers9 [AOS23,
Section 5] and CRS-less NIZKs with security against uniform adversaries [AWZ23a, Sections 9-10]. At the
base of this choice is only the will to narrate a more concise and linear story about sampling randomness in
one round.

Sampling CRSs in one round: semi-honest security. Our story starts by studying one-round sam-
pling protocols in the easiest setting: semi-honest security10. We consider a particular type of one-round
sampling protocols in which the output can be publicly derived from the transcript. We call this a distributed
sampler. More formally, a distributed sampler for a distribution D(1λ) consists of a pair (Gen,Sample) where
Gen is an algorithm used by all parties to generate the message they send in the only round of interaction and

8An unbounded universal sampler can be view as a cryptographic object that, on input the description of any distribution,
produces a sample without leaking any additional information. The construction is unbounded in the sense that there exists
no bound on the set of input distributions. In particular, the sampler can produce secure samples from distributions that are
arbitrarily bigger than the sampler itself.

9A party-dynamic distributed sampler consists of a one-round sampling protocol in which the set of participants is dynamic:
the messages exchanged in these one-round protocols are independent on the identities and the number of other players. This
gives rise to sampling protocols in which the participants do not need to be online: it is sufficient for them to publish a single
message on a bulletin board (e.g. blockchain). To generate a sample, it is sufficient to recover the messages published by an
arbitrary subset of trusted players without them having to return online. The output is secure as long as one of the trusted
parties behaves honestly.

10A semi-honest (or passive) protocol guarantees security only if all parties follow the protocol description. Notice that this
security notion is not trivial, as a protocol may leak problematic information (e.g. CRS trapdoors) even if all parties behave
honestly.
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Ideal Functionality for Semi-Honest Distributed Samplers FD

On input Sample from all parties, compute R $← D(1λ) and output it to all participants and the
adversary.

Figure 1.1: Ideal functionality for semi-honest distributed samplers. The functionality remains unvaried in
the non-rushing semi-malicious case.

Sample is a deterministic procedure that, on input the exchanged messages, returns the output of the com-
putation. We formalise the security of semi-honest distributed samplers using a simulation-based definition:
we require the obtained protocol to implement the ideal functionality in Figure 1.1.

In [ASY22a], we studied semi-honest distributed samplers for any efficient distribution D(1λ) and any
(polynomial) number of parties11. We restricted our security analysis to PPT adversaries statically corrupting
any number of parties, but leaving at least one honest12. We show that, in this setting, under strong
assumptions such as indistinguishability obfuscation (iO) [BGI+01, GGH+13, JLS21, JLS22] and multi-key
fully homomorphic encryption (multi-key FHE) [LTV12, MW16, AJJM20], building distributed samplers is
always possible. Furthermore, the construction we provide remains secure even if the adversary is allowed
to maliciously choose the randomness of the corrupted players before the protocol execution starts (note: the
adversary is not allowed to use rushing). As for the semi-honest case, the corrupted players are still required
to follow the protocol. We call this stronger version of adversary non-rushing semi-malicious.
Theorem 1.1.1 (Informal version of Theorem 2.4.1). Let n(λ) be a polynomial function in the security
parameter. Assume the existence of (polynomially secure13) iO and (polynomially secure) multi-key FHE.
Then, in the context of computational security, there exists an n-party non-rushing semi-malicious distributed
sampler for any efficient distribution D(1λ) withstanding up to n− 1 static corruptions.

Sampling CRSs in one round: active security. The next setting we considered is active security (also
called malicious security). Semi-honest security and similarly non-rushing semi-malicious security are based
on strong assumptions: in the real world, it is implausible that corrupted players do not take full advantage
of their opportunities and keep following the protocol description. It is therefore natural to study the security
of distributed samplers in presence of maliciously (mis)behaving participants.

Unfortunately, we immediately run into an issue: due to a well-known result by Cleve [Cle86] on the
impossibility of coin tossing, the functionality FD in Figure 1.1 cannot be implemented against active ad-
versaries in the dishonest majority setting (notice that when D is the uniform distribution over {0, 1}, FD
becomes the coin-tossing functionality). More in general, there exists a class of attacks that are inherent
to all one-round MPC protocols. An active adversary can always use rushing behaviour : as soon as the
honest parties speak, the adversary can rush to see their messages, choosing only at that point what to send
on behalf of the corrupted players (all of this happens in the same round). In particular, the adversary
can “grind” multiple choices of the corrupted messages, until it finds an output it likes. To summarise,
maliciously secure distributed sampler protocol inevitably allow (limited) influence to the adversary: the
adversary can try different (but polynomially many) protocol executions in its head (all of them with the
same of choice of honest messages) and choose the one that appreciates the most. To take this into account,
in the malicious setting, we modify the functionality FD as in Figure 1.2. Notice that if we generate the
CRS of any secure MPC protocol using FActive

D , the protocol remains still secure.
11An efficient distribution consists of a distribution that is described by a polynomial-sized circuit mapping a sequence of

uniformly random bits into a sample.
12Static corruption requires the adversary to choose the set of corrupted players before the beginning of the protocol execution,

allowing no subsequent changes. If instead the adversary is free to corrupt the participants even after the protocol started
running, we talk about adaptive corruption.

13We use the term polynomial security as opposed to subexponential security. A primitive is subexponentially secure if there
exists a constant ε > 0 such that, for every O(2λ

ε
)-time probabilistic adversaries, the construction retains its security properties

with O(2−λ
ε
) advantage. A primitive is polynomially secure if, for every PPT adversary, the advantage is negligible in λ.
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Ideal Functionality for Active Distributed Samplers FActive
D

Initialisation: On input Init from all parties set Q← ∅. If all parties are honest, output R $← D(1λ).
Query: On input (Query, id) from the adversary where id is a not-yet-queried label, sample Rid

$← D(1λ),
set Q← Q ∪ {(id, Rid)} and provide Rid to the adversary.
Output: On input (Output, îd) from the adversary, retrieve the pair (îd, Rîd) from Q. If there exists at
least one corrupted party, output Rîd and halt.

Figure 1.2: Ideal functionality for active distributed samplers. The functionality remains unvaried in the
rushing semi-malicious case.

The study of active distributed samplers began in [ASY22a]. In the work, we proposed a compiler
capable of converting any one-round, inputless protocol with security against non-rushing semi-malicious
adversaries into a one-round maliciously secure protocol implementing (a slightly modified version of) the
same functionality. Such compiler, named anti-rusher, is build from (polynomially secure) iO and non-
interactive zero-knowledge (NIZK) in the programmable random oracle model. By applying the anti-rusher
compiler on the non-rushing semi-malicious distributed samplers of Theorem 1.1.1, we obtain the following
result.
Theorem 1.1.2 (Informal version of Theorem 2.5.3). Let n(λ) be a polynomial function in the security
parameter. Assume the existence of (polynomially secure) iO and (polynomially secure) multi-key FHE and
(polynomially secure) NIZKs for NP. Then, in the context of computational security in the UC model with
programmable random oracle, there exists an n-party maliciously secure distributed sampler for any efficient
distribution D(1λ) withstanding up to n− 1 static corruptions.

Active security and random oracles. The result in Theorem 1.1.2 suffers from an important disad-
vantage: it relies on a programmable random oracle. Random oracles are indeed an idealised model that
cannot be instantiated in the real world, and programmable random oracles are an even stronger flavour
of the setting. In [AOS23], we tried to answer the question of whether the functionality in Figure 1.2 can
be implemented without random oracles in the actively secure setting. To simplify the task we considered
also distributed samplers that rely on CRSs. At first this might seem strange: what is the point of using
distributed samplers to generate CRSs if the latter need CRSs too? We argue that if the CRSs they rely
upon is reusable or particularly easy to generate (for instance because short or unstructured), distributed
samplers of this type can still be interesting. At least for the case of universal composability (UC) [Can01],
we showed that none of this is possible. The lower-bound is based on the following result.
Theorem 1.1.3 (Informal version of Theorem 3.4.1). Suppose that there exists a active distributed sampler
for the distribution D(1λ) withstanding any number of static corruptions in the UC model. Suppose that
the protocol relies on a CRS σ, then the Shannon entropy14 of the output R conditioned on σ is

H(R|σ) = O(log λ).

The theorem is essentially stating that the CRS σ almost determines the output of the distributed sampler.
This has three negative repercussions: the CRS is non-reusable (see Corollary 1.1.4), it cannot be short (see
Corollary 1.1.5) and it cannot be unstructured unless D(1λ) was obliviously samplable to begin with (in
other words, there existed a way to deterministically convert public, uniformly random coins into a secure
sample from D. See Corollary 1.1.6). To summarise, without random oracles, actively secure distributed
samplers that implement the functionality FActive

D essentially provide no advantage over the trusted dealer
that generates a public sample from D(1λ)!
Corollary 1.1.4 (Informal version of Corollary 3.4.2). Two executions of a UC-secure, active distributed
sampler reusing the same CRS produce the same output with inverse polynomial probability.

14The conditional Shannon entropy H(R|σ) measures how unpredictable R is once σ is known.
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Corollary 1.1.5 (Informal version of Corollary 3.4.3). In a UC-secure active distributed sampler, the CRS
size is at least

|σ| ≥ HYao(D)−O(log λ),

where HYao(D) denotes the Yao entropy [Yao82] of the distribution D15.
Corollary 1.1.6 (Informal version of Corollary 3.4.4). A UC-secure, active distributed sampler can have an
unstructured CRS if and only if the underlying distribution D(1λ) is obliviously samplable, i.e., there exists
a way to generate secure samples from D using public random coins and no interaction.

All the results we described above were proved to hold for an even weaker class of attacks: rushing semi-
malicious adversaries, which are forced to follow the protocol instructions, but are allowed to maliciously
choose the randomness of the corrupted players after seeing the messages of the honest parties. This makes
our lower bounds even stronger.

Working around the impossibility: security-preserving distributed samplers. With the lower
bounds we just described, we abandoned all hopes of obtaining UC-secure, active distributed sampler in
the dishonest majority setting. In [AWZ23a], we tried to work around the impossibilities. After failing in
different security settings such as superpolynomial simulation, honest majority and standalone security, we
decided to try a different path: instead of aiming for simulation-security, we considered new game-based
definitions. This led to the introduction of two new notions: hardness-preserving distributed samplers and
indistinguishability-preserving distributed samplers.

Hardness-preserving distributed samplers. Hardness-preserving distributed samplers preserve the
hardness of search problems: suppose that retrieving a trapdoor T hidden in a sample R $← D(1λ) is
infeasible for all PPT adversaries. Then, if R is generated by executing a hardness-preserving distributed
sampler, allowing the adversary to maliciously control up to n−1 parties, retrieving the trapdoor T remains
still infeasible. More in general, hardness-preserving distributed samplers can be used to remove CRSs from
MPC protocols while guaranteeing a weak form of security against active adversaries: all attacks that failed
with overwhelming probability against the protocol in the CRS model, still fail with overwhelming probability
even if the CRS is generated by an hardness-preserving distributed sampler (again the adversary is allowed
to control a proper subset of parties).

In [AWZ23a], we showed how to build a hardness-preserving distributed sampler (relying on a reusable,
unstructured λ-bit CRS) from subexponentially secure iO, subexponentially secure multi-key FHE, extremely
lossy functions (ELFs) [Zha16] and particular NIZKs we called almost-everywhere extractable. The latter
consist of witness-extractable NIZKs for which finding accepting proofs that make the extractor fail is partic-
ularly hard. Indeed, so hard that it is possible to apply the trick of [BCP14]16 to argue that the obfuscations
(using iO) of the following programs are indistinguishable despite the existence of differing inputs: both
programs receive an input and an almost everywhere extractable NIZK proving its welformedness. The
programs perform the same operations on the provided input conditioned on the successful verification of
the NIZK (in case of a failure, the programs output ⊥). The second program, however, tries also to extract
the witness from the proof, outputting ⊥ in case of a failure.
Theorem 1.1.7 (Informal version of Theorem 4.8.1). Assume the existence of subexponentially secure iO,
subexponentially secure multi-key FHE, ELFs and almost everywhere extractable NIZKs for NP. Then,
there exists an n-party hardness-preserving distributed sampler for any efficient distribution D(1λ).
Theorem 1.1.8 (Informal version of Theorem 4.4.6). Assume the existence of perfectly correct identity based
encryption (IBE), perfectly binding non-interactive commitments, subexponentially secure injective one-way

15The Yao entropy measures the degree to which the samples of a distribution can be efficiently compressed without losing
information. In other words, HYao(D) describe the size of the most compact encoding of the samples produced by D.

16In [BCP14], Boyle, Chung and Pass show that if we can distinguish between two obfuscated program having a polynomial
number of differing inputs, then we can find one of these differing inputs in polynomial time. The strategy is to reobfuscate
the programs fixing some of their input bits and perform some sort of binary search: if the resulting obfuscations are still
distinguishable, it must be that the input bits we fixed are consistent with at least one differing input.
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functions (OWFs) and perfectly sound witness-indistinguishable proofs for NP (NIWIs). Then, there exist
almost everywhere extractable NIZKs for NP.

Indistinguishability-preserving distributed samplers. Indistinguishability-preserving distributed
samplers preserve the functionality of the protocols they compile if particular conditions are satisfied: sup-
pose that we deal with a protocol Π relying on CRS. Suppose also that Π implements a functionality F
and, more crucially, its simulator produces the simulated CRS before interacting with F (in other words, the
simulated CRS is independent of any information held by the functionality). Then, if we generate the CRS
of Π using an indistinguishability-preserving distributed samplers, the resulting protocol still implements F.

In [AWZ23a], we show that our hardness-preserving distributed sampler is also indistinguishability pre-
serving. The construction relies, however, on a short, reusable, unstructured CRS (this is unavoidable,
otherwise we would be able to obtain 3-round actively secure OT in the plain model [PVW08, HV16]).
Theorem 1.1.9 (Informal version of Theorem 4.8.6). Assume the existence of subexponentially secure iO,
subexponentially secure multi-key FHE, ELFs and almost everywhere extractable NIZKs for NP. Then, there
exists an n-party indistinguishability-preserving distributed sampler for any efficient distribution D(1λ).

Unbiased sampling with active security: coin tossing extension. In the last paper presented in
this thesis [ADIN24a], we go back to the question of implementing the functionality in Figure 1.1 with
guaranteed output in a presence of an active adversary corrupting a dishonest majority of participants. As
we have already explained, such functionality cannot be implemented in the plain model (nor if we rely on
CRSs or random oracles) due to Cleve’s impossibility [Cle86]. What happens however if we assume that
the parties have access to a copy of FUk where Uk denotes the uniform distribution over {0, 1}k for a small
value k(λ) = ω(log λ)? Does the impossibility still hold? The question is interesting as it is not hard to
imagine ways FUk can be implemented: for instance, we can use the randomness produced by a beacon on
a blockchain, or we could rely on some physical device.

We started by considering the problem for D = Um, where m(λ) > k(λ) is any polynomial function and
Um denotes the uniform distribution over {0, 1}m. We are essentially asking whether there is a way to extend
k(λ) bits of unbiased randomness with security against active adversaries corrupting a dishonest majority
of participants. It turns out that this problem has already been studied; it is called coin tossing extension
(CTE) [BGR96, HMU06]. Clearly, the question becomes trivial in the programmable random oracle model.
In the plain model, however, the problem turns out to be surprisingly interesting and elegant (we recall that,
as argued in the introduction, we cannot obtain a CTE protocol by simply expanding the string produced
by FUk using a PRG).

In [HMU06], Hofheinz, Müller-Quade and Unruh presented a statistically secure, 1-round CTE protocol
in the standalone model (the authors considered only CTE with abort, not realising that their construction
has actually guaranteed output). The protocol achieves only O(log λ) stretch, meaning that in each protocol
execution, we extend the k(λ) bits provided by FUk to k(λ) + O(log λ) bits of unbiased randomness. If we
would like to produce ω(log λ) randomness, we would therefore need to repeat ω(log λ) sequential executions
of the protocol.

Is it possible to design O(1)-round CTE protocols with ω(log λ) stretch?

Coin tossing extension: positive results. In [ADIN24a], we showed that, if we restrict our security
analysis to efficient adversaries, the answer to the above question is (likely) yes. Our most important result
is the following.
Theorem 1.1.10 (Informal version of Theorem 5.5.3). Letm(λ) and n(λ) be any polynomial functions. Under
the hardness of learning with errors (LWE) with subexponential modulus-to-noise ratio [Reg05], there exists
a one-round, n-party CTE protocol with stretch m(λ). The protocol requires no CRS and a single call to
FUk . Furthermore, it is secure against adaptive corruption in the UC model.

As our second result, we introduce an algebraic framework where it is possible to build 1-round UC-secure
coin-tossing extension with arbitrary polynomial stretch. The framework, called hidden subgroup framework,
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consists of a group G hiding a smaller subgroup H (we require that the uniform distribution over G and H are
indistinguishable) and can be instantiated based on Paillier, on class groups, or on decisional Diffie-Hellman
(DDH). The resulting CTE protocol makes however use of a CRS.

Theorem 1.1.11 (Informal version of Theorem 5.6.4). Let m(λ) and n(λ) be any polynomial functions.
Assume the existence of simulation-extractable NIZKs for NP. Under the hardness of one of the following

• DDH over prime order groups [DH76];

• quadratic residuosity (QR) and decisional composite residuosity (DCR) over the Paillier group [Pai99];

• hard subgroup membership (HSM) over class groups [CL15];

there exists a one-round, UC-secure, n-party CTE protocol with stretch m(λ). The protocol requires a
(reusable) CRS and a single call to FUk .

The final positive result we present is an n-party CTE protocol with arbitrary stretch based on one-way
functions (OWFs). The constructions, however, requires O(n) rounds and is only standalone secure.

Theorem 1.1.12 (Informal version of Theorem 5.7.3). Letm(λ) and n(λ) be any polynomial functions. Under
the existence of OWFs, there exists a O(n)-round, n-party CTE protocol with stretch m(λ). The protocol
requires a single call to FUk .

Coin tossing extension: negative results. In [ADIN24a], we prove also a lower-bound for statistical
security in the standalone model with black-box simulation.

Theorem 1.1.13 (Informal version of Theorem 5.2.6). Any R-round CTE protocol with statistical security
in the standalone model with black-box simulation has O(R · log λ) stretch.

The result therefore proves that the CTE construction in [HMU06] is optimal.

On the relation between coin tossing extension and randomness extractors. Coin tossing ex-
tension protocols are tightly related to seeded randomness extractors. A randomness extractor consists of a
deterministic function that transforms, with the aid of a short, uniformly random seed, any sufficiently-high
entropy material into a long (essentially) random string of bits. More specifically, we can regard a CTE
protocol as a randomness extractor for the class of entropy sources outputting the transcript of a CTE
execution where at least one party behaves honestly. The seed consists in the output of the last call to the
auxiliary functionality FUk . Randomness extractors necessitate the seed to be independent of the material
produced by the entropy source. This property is ensured by the following result: in a CTE protocol, any
subsequent round of interaction after the last call to FUk is useless.

Theorem 1.1.14 (Informal version of Theorem 5.4.3). Let Π be a coin tossing extension protocol. Let Π′ be
the protocol in which all parties behave as Π until the last call to FUk , after which all parties stop. Then Π′

is still a secure coin tossing extension protocol.

We observe that the extractors we obtain from CTE protocols satisfy an interesting, somewhat surprising
property: given a description of the entropy source and a random sample r in the output space, we are able
to simulate an extractor execution producing r. We call extractors of this kind explainable extractors. By
applying this observation on the construction of Theorem 1.1.10, we obtain the following corollary.

Corollary 1.1.15 (Informal version of Corollary 5.5.7). Consider the class of entropy sources S producing
the transcript of a protocol where all parties simultaneously broadcast a unformly random string and a PPT
adversary can maliciously corrupt a dishonest majority of participants (but not their totality).

Under the hardness of LWE with subexponential modulus-to-noise ratio, there exists an explainable
extractor for S.

12



Unbiased sampling from any distribution. Finally, in [ADIN24a], we abandoned the study of coin
tossing and we reverted back to the more general case of securely sampling from any arbitrary distribution
D(1λ). We have seen that, with the help of FUk , it is possible to circumvent Cleve’s impossibility [Cle86],
producing randomness free from any form of adversarial influence. We ask:

Is it possible to implement the functionality FD in Figure 1.1 with the help of FUk?

In other words, if we keep relying on the help of FUk , are we able to securely produce samples from any
distribution D(1λ) leaving no influence to the adversary? By combining the techniques we used to build
1-round CTE with indistinguishability-preserving distributed samplers, we show that the answer is yes.
Theorem 1.1.16 (Informal version of Theorem 5.9.5). Assume the existence of indistinguishability-preserving
distributed samplers, iO and injective, length-doubling PRGs. Then, there exists a one-round, n-party
protocol securely realising the functionality FD (see Figure 1.1) in the FUk -hybrid model. The protocol
guarantees UC security against an active PPT adversary statically corrupting up to n− 1 parties.

Sampling correlated randomness in one round: public-key PCFs. We now move to the question
of generating correlated randomness in one round. In other words, we study public-key PCFs: one round
protocols for the generation of large amount of correlated randomness with sublinear communication in the
size of the outputs.

In [ASY22a], we showed how to build public-key PCFs from distributed samplers, iO and public-key
encryption. We considered two definitions for public-key PCFs. The first one is based on the concept of
reverse samplability [BCG+19b]: we say that a form of correlated randomness is reverse-sampleable if, for
any subset of corrupted parties, it is possible to simulate the correlated material of the honest parties from
that of the corrupted players. Such simulator is called the reverse-sampler. Following this blueprint, we
defined the security of the first family of public-key PCFs asking that the correlated material they produce
for the honest parties is indistinguishable from the one we obtain by reverse-sampling the output of the
corrupted players. In other words, we are implementing the functionality that lets the adversary choose the
correlated material obtained by the corrupted players and then uses it to reverse-sample the output of the
honest parties. For many applications of correlated randomness, this definition is often enough to guarantee
security.
Theorem 1.1.17 (Informal version of Theorems 2.6.8, 2.6.9 and 2.6.10). Assume the existence of non-rushing
semi-malicious, n-party distributed samplers for any distribution, (polynomially secure) iO and public-key
encryption (PKE). Then, there exits a non-rushing semi-malicious, n-party, public-key PCF for any reverse-
samplable correlation.

The construction can be upgraded to active security by additional assuming the existence of NIZKs
for NP and moving to the programmable random oracle model. Furthermore, in case the correlation is
reverse-samplable with subexponential security, we can obtain actively secure public-key PFCs without
random oracles by relying on subexponentially secure distributed samplers, subexponentially secure iO,
subexponentially secure PKE and polynomially secure NIZKs.

In all these constructions, the communication is logarithmic in the size of correlated material they pro-
duce.

The second class of public-key PCFs we studied in [ASY22a] guarantees a stronger form of security: we
implement the functionality that samples the correlated material and distributes it to all participants leaving
no influence to the adversary. In other words, the correlated material obtained by the parties, including that
of the corrupted players, looks like as if it was generated by the targeted correlation function. Unfortunately,
this type of public-key PCFs can achieve sublinear communication in the size of the outputs only in the
random oracle model [BCG+19b]. If the oracle is programmable, however, it is possible to design public-key
PCFs that are tailored to no specific correlation: the latter can be chosen, after the parties have sent their
messages. We call this primitive an ideal public-key PCF.
Theorem 1.1.18 (Informal version of Theorem 2.7.8). Assume the existence of active, n-party distributed
samplers for any distribution (implementing the functionality in Figure 1.2), adaptive universal samplers
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[HJK+16] and public-key encryption (PKE). Then, there exits an active n-party, ideal public-key PCF in
the programmable random oracle model.

1.1.2 Personal Contribution
In this section, I will summarise, as truthfully as I can, my contribution to the works that are part of this
thesis. As a disclaimer, however, the perspective that the PhD school forces me to take here is far from my
personal and moral view on the matter: I am not sure I believe in the concept of merit, and I am even more
sceptical of the fact that merit can be quantified, added and divided as if it was a material thing. I prefer
to view “my” research as the result of the work that the whole society carried out over ages, instead of just
three-four names listed under the title of the work.

I believe that focusing on the researcher instead of the research (as I am forced to do below) promotes
misleading and harmful perspectives of individualism and self-narration. These views then ripple throughout
the world of research in many different forms, such as impostor syndrome, anxiety, objectification (researchers
are more than their mere abilities), passivity.

If you believe that this society needs fewer stories of heroes and more stories of kind collaboration, as
Ursula Le Guin argues in “The Carrier Bag Theory of Fiction” [Gui19], you are invited to skip the following
paragraphs and read about who contributed to this work in the acknowledgement section.

A summary of personal contributions. All papers were written entirely by me with minor corrections
from the other authors. The exceptions are all introduction sections and some of the technical overviews:
Section 2.1 [ASY22a, Section 1] (written by Sophia Yakoubov), Sections 1, 2.2 and 2.3 of [AOS23] (written
mostly by Peter Scholl with minor contributions from Maciej Obremski and myself), Section 1 (written by
Mark Zhandry) and Section 2 (equal contribution between Mark Zhandry and myself) of [AWZ23a], Section
1 of [ADIN24a] (written by Jack Doerner).

The work in [ASY22a] comes from an intuition of Peter Scholl and Sophia Yakoubov about using iO
and multi-key FHE to build public-key PCFs. The introduction of distributed samplers, their definition,
the semi-honest construction and its security proof are all due to me. The same holds for the introduction,
definition, construction and security proof of anti-rusher compilers. The ideas on how to define public-key
PCFs and build them from distributed samplers were an equal contribution between Peter Scholl and I. The
relative security proofs were my contribution.

The intuition behind the lower bounds presented in [AOS23] is due to me, whereas the question of
building party-dynamic distributed samplers was proposed by Peter Scholl. The impossibility results for
active distributed samplers were proved by myself with the support of Maciej Obremski. The introduction,
the definition and construction of unbounded distributed samplers are due to myself (unfortunately, we
discovered that some of the techniques had already been used in [GS18a]). The same holds for the definition
and construction of party-dynamic distributed samplers.

In [AWZ23a], the introduction and definition of hardness-preserving distributed samplers is due to Mark
Zhandry. The same was for the intuition that the primitive was connected to extremely lossy functions,
and almost-everywhere extractable NIZKs could be built by relying on the trick of [BCP14]. The definition
of indistinguishability-preserving distributed samplers, lossy distributed samplers and all constructions and
proofs are my own contribution. The question of building CRS-less NIZKs with security against uniform
adversaries, as well as the basic blueprint was proposed by Brent Waters. The rest of constructions and
security proofs were my contribution.

In [ADIN24a], the study of coin-tossing extension was proposed by Yuval Ishai. All constructions, lower
bounds and proofs were my own contribution. The only exception was the intuition behind explainable
extractors and their relationship with CTE, which is due to Yuval Ishai. Lemma 5.8.1 and its proof is due
to Varun Narayanan.

1.1.3 Related Work
We now give an overview of related work.
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Non-interactive MPC. Non-interactive MPC (NIMPC) [BGI+14a, HIJ+17] allows the evaluation of
a deterministic function f on the inputs provided by the parties using a single round of interaction. It
could seem that using this primitive, we can immediately obtain distributed samplers: why not to evaluate
the function that XORs the strings input by the parties and then uses the result as randomness for the
distribution D(1λ)? This idea does not work as non-interactive MPC provides too weak security guarantees.
This is due to an attack the cannot be prevented in any one-round protocol: the residual function attack.
Specifically, an adversary can always rerun the protocol in its head changing the inputs of the corrupted
parties, while keeping the messages of the remaining participants unvaried. Since the protocol requires
a single round, at the end of this imagined execution, the adversary learns the output of the modified
evaluation. In other words, by repeatedly applying this attack on the naïve sampling protocol, the adversary
can obtain many correlated samples. For some distributions D(1λ), this could be a serious problem. One
could therefore try to find a more clever way to generate the randomness we feed into D(1λ). Instead of
XORing the inputs of the parties, we could perform more complex operations so that even if the adversary
reruns the protocol in its head, the randomness we feed into D(1λ) looks independent of the one used in
the previous imaginary executions. There is however another problem: non-interactive MPC relies on a PKI
even in the case of semi-honest security. The latter ensures that in the imaginary executions, the adversary
can only regenerate the messages of the corrupted players. Since we are interested in building semi-honest
distributed samplers in the plain model, we need to try something new.

Non-interactive key exchange. Non-interactive key exchange (NIKE) [DH76, KRS15] allows a set of
parties to agree on a secret random key using a single round of interaction. The primitive differs from
distributed samplers from three points of view. The first one is the distribution of the produced sample:
while NIKEs generate a uniformly random string of bits, distributed samplers tackles generic distributions.
The second big difference is that distributed samplers produce public samples: their output is computable
also by external entities that just happen to see the messages exchanged by the parties. Finally, while
a NIKE guarantees that its output looks random only if all participants are honest, distributed samplers
provide much stronger security guarantees: their output looks random even if there exists only one honest
player.

Universal Samplers. A universal sampler can be viewed as a cryptographic object allowing the generation
of samples from the distributions it receives as input. The primitive was introduced by Hofheinz et al.
[HJK+16] building it from indistinguishability obfuscation. Universal samplers come in two flavours: selective
universal samplers, which guarantee security only for a single distribution chosen before the generation of
the sampler, and adaptive universal samplers, which allow the secure generation of arbitrarily many samples
from adaptively chosen distributions (adaptive universal samplers can exist only in the random oracle model
[HJK+16]).

There are two major differences between universal samplers and distributed samplers: the first one is
that universal samplers guarantee security only if they are generated by a trusted setup, whereas distributed
samplers are, as the name suggest, distributed, ensuring the security of their outputs as long as at least
one party is honest. The second main difference is that universal samplers are indeed universal: they are
not tailored to any specific distribution. Distributed samplers on the other hand are interesting even if the
distribution of the samples is fixed. Of course, we can also consider a stronger definition of distributed
samplers in which the parties can sample elements from any distribution. This primitive exists, it is called
distributed universal samplers and it can be trivially obtained by using a distributed sampler to produce a
universal sampler.

Spooky encryption. In [DHRW16], Dodis et al. introduced spooky encryption. This corresponds to a
multiparty version of FHE in which the parties can obtain the output of the function evaluation immediately
after receiving the encryption of the inputs. Specifically, the primitives allows to perform homomorphic
operations on ciphertexts generated under independent public keys. Then, using their secret keys and
without the need for any interaction, the parties can retrieve their output.
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Due to the one-round nature of the primitive and the issue with residual function attacks, spooky encryp-
tion only supports the evaluation of a restricted class of randomised functions: in order to preserve semantic
security, it is fundamental that the outputs of any subset of parties leak no information about the inputs of
the remaining players.

Currently, we know how to build spooky encryption for functions outputting random additively secret-
shared values depending on the inputs. This construction is based on LWE with subexponential modulus-to-
noise ratio and relies on an unstructured CRS [DHRW16]. Furthermore, in the two party setting, we know
how to build a more generic form of spooky encryption based on (among other primitives) subexponentially
secure iO [DHRW16].

One could imagine to build distributed samplers from spooky encryption by evaluating the inputless
function described by D(1λ). This however does not necessarily give a distributed sampler: spooky encryp-
tion only guarantees privacy of the inputs, but nothing prevents it from revealing information about the
randomness input in D(1λ).

Pseudorandom correlation generators and pseudorandom correlation functions. Pseudorandom
correlation generators (PCGs) [BCG+19b, BCG+19a, BCG+20b] and pseudorandom correlation functions
(PCFs) [BCG+20a] allow n parties to securely generate large amounts of correlated randomness by locally
expanding small seeds. In the case of PCGs the expansion of the seed occurs all at once, producing a
polynomial amount of correlated material. In the case of PCFs, the expansion takes place in a one by one
fashion, similarly to PRFs. As a consequence, PCFs may have no polynomial bound on the amount of
produced material.

PCGs and PCFs can be easily transformed into secure, sublinear communication MPC protocols for the
generation of large amounts of correlated material: it is sufficient to design MPC protocols that generate
and distribute the correlated seeds with linear communication in their size. Since the size of the seeds is
sublinear in the amount of material they produce, we obtain the protocol we desire.

Setting up the seeds in a single round is however tricky. When this is possible we obtain a public-key
PCFs. The name is due to the fact that the messages exchanged in the only round of interaction act as a
public key, whereas the randomness used for their generation acts as the private counterpart. At the time
our research began, public-key PCFs were known only for OT17 and VOLE18 correlation based on Paillier
[OSY21], and for more general additively shared correlation based on spooky encryption [DHRW16]19. In
this thesis, we wonder whether public-key PCFs can be build for more generic forms of correlation.

Coin tossing and coin tossing extension. A coin tossing protocol [Blu82] allows a set of parties to
agree on a uniformly random string of bits. Due to the large use of public randomness in cryptography, the
primitive has captured the attentions of researchers for many years.

The question becomes particularly interesting in the malicious setting (semi-honest coin tossing is trivial).
While the primitive is well understood in presence of an honest majority, the dishonest majority setting is
burdened by Cleve’s impossibility result [Cle86]: for every R-round coin tossing protocol, there exists a PPT
adversary that biases the output by at least O(1/R). For years, the community has therefore tried to find
new ways to get around the impossibility, either by consider coin-tossing with abort [Blu82, Lin03] or by
considering new models such as time-based cryptography [RSW00, BBBF18].

In this thesis, we study coin tossing extension (CTE), which tries to circumvent Cleve’s impossibility by
relying on an auxiliary resource providing all participants with a random, unbiased-but-short string of bits.
This primitive was introduced by Bellare et al. [BGR96] and later studied by Hofheinz et al. [HMU06]. In
this last work, the authors showed a series of lower bounds and upper bounds: they proved the impossibility
of CTE whenever the auxiliary resource provides O(log λ) bits of randomness, the impossibility of perfectly

17In OT correlation a party obtains a random “shift” ∆ ∈ {0, 1}k and random elements K1, . . . ,KL ∈ {0, 1}k. The other
party obtains random bits b1, . . . , bL ∈ {0, 1} and strings M1, . . . ,ML where Mi = Ki ⊕ bi ·∆ for every i ∈ [L].

18In VOLE correlation a party obtains a random “shift” α in a ring R and random elements a1, . . . , aL ∈ R. The other party
obtains random elements x1, . . . , xL ∈ R and values b1, . . . , bL where bi = ai ⊕ xi · α for every i ∈ [L].

19Additively shared correlation consists of any form of correlation in which the parties obtain random additive secret-sharing
of correlated values.
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secure CTE in the standalone model and of statistical CTE with UC security. On the positive side, Hofheinz
et al. present a statistically secure, 1-round CTE protocol with O(log λ) stretch in the standalone model
[HMU06].

In this thesis, we try to study coin tossing extension protocols with ω(log λ) stretch and O(1) rounds.
Moreover, we study whether the auxiliary functionality can be used to produce secure unbiased sample from
arbitrary distributions.

Indistinguishability obfuscation. Indistinguishability obfuscation [BGI+01, GGH+13, JLS21] is one of
the strongest tools used in cryptography today. The primitive specifies how to “scramble” any given circuit
into a new circuit (often called program) computing exactly the same function. The resulting object is
however so muddled that it is infeasible to recognise the circuit it was originated from.

Distributed samplers are strongly related to obfuscation: all the constructions we present will make heavy
use of this primitive. And this is no coincidence: we show that by using semi-honest distributed samplers
along with LWE, we are able to build indistinguishability obfuscation. This (never published) result is
obtained following the blueprint of Wee and Wichs [WW21]. We sketch our argument in Section 1.2.2.

1.2 Technical Overview
We now present a technical overview of the results presented in this thesis.

1.2.1 An Informal Discussion of Preliminaries
In this section, we present an informal description of cryptographic notions and primitives we used in our
work. We recall that λ denotes the security parameter20. All protocols, primitives and random variables will
be parametrised by λ. We say that a function ε(λ) is negligible if ε(λ) = λ−ω(1). For any ` ∈ N, we use [`]
to denote the set {1, 2, . . . , `}. All logarithms will be in base 2. We use 1λ to denote the security parameter
in unary notation (i.e. a string of λ bits all set to 1). We use x← y or x← A(y) to assign y or the output
of the deterministic algorithm A(y) to the random variable x. We use instead x $← X or x $← A(y) to assign
a uniformly random sample from a set X or the output of the randomised algorithm A(y).

Security games and advantage. The security of cryptographic primitives is often formalised by relying
on security games (parametrised by the security parameter λ) between an “honest” entity called the challenger
and an “evil” entity called the adversary. Typically, the goal of the game is for the adversary to find an
object hidden in a large domain or to perform an almost impossibile task (search game) or to guess a bit
chosen at random by the adversary (decision game). We measure the success of an adversary using the notion
of advantage. In the case of search games, the advantage is defined as the probability that the adversary
finds one of the hidden objects or manages to perform the infeasible task. In the case of decision games, the
advantage is defined as the distance between the probability of the adversary guessing the bit sampled by
the challenger and 1/2. Typically, we say that a game is hard if the advantage is negligible in λ for every
adversary in the considered class.

Indistinguishability and hybrid arguments. We say that two random variables X0 and X1 are in-
distinguishable, if it is impossible to distinguish between them with non-negligible advantage. Formally,
we consider the decision game in which the challenger samples a random bit b $← {0, 1} and provides the
adversary with a sample from Xb. The two variables are statistically indistinguishable if all adversaries
(also computationally unbounded ones) guess b with negligible advantage. We say that the variables are
computationally indistinguishable if the advantage is negligible for all probabilistic, polynomial time (PPT)
adversaries.

20A security parameter describes the computational power of the protocol participants and the adversary.
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Indistinguishability is often at the base of hybrid arguments: suppose that we deal with a construction
that makes use of a sample from X0. We can consider the “hybrid” construction in which we substitute the
sample from X0 with a sample from X1. Since X0 and X1 are indistinguishable, the hybrid construction
will behave equivalently to the original one. By repeating this procedure multiple times in a cascade of
hybrids, we can slowly switch the pieces of the construction until we reach a version for which it is easier to
analyse the security properties. The distinguishability advantage between the starting point and the final
point will be roughly the sum of all distinguishing advantages between pairs of subsequent hybrids, so as
long as their number is polynomial, the final version of the construction will be indistinguishable from the
original one (this is because, for any constant c, λc · λ−ω(1) = λ−ω(1)). If instead the number of hybrids is
superpolynomial, we need to require the average advantage between subsequent hybrids to be smaller than
negligible: if there are L(λ) hybrids, we need the average advantage to be L(λ)−1 · λ−ω(1). This is why, in
this thesis, we often rely on subexponentially secure primitives, i.e., there exists a constant ε > 0 for which
the advantage of the primitive against O(2λ

ε

)-time adversaries is at most 2−λ
ε .

MPC protocols and security with black-box simulation. In all multiparty computation protocols
we describe in this chapter, we denote the number of participants by n. We denote the i-th party by Pi.

The security of MPC protocols is usually defined using a real world/ideal world paradigm: in the real
world, we consider the interaction of the protocol with an adversary. The adversary has the ability to corrupt
a subset of participants and learn all their secrets. Furthermore, if the adversary is active (in contrast with
semi-honest adversaries), the adversary can also control the operations of the corrupted parties, making
them misbehave according to its will. The adversary always gets to choose the inputs of the honest parties
(but not their actions), moreover it gets to see their output. We denote the set of corrupted parties by C
and the set of honest parties by H.

In the ideal world, the adversary interacts with a functionality and a simulator. The functionality models
the ideal execution of the protocol, controlling the outputs of the honest parties and what information
gets leaked to the adversary. For instance, if the protocol computes a function f , the functionality could
gather the inputs of all parties x1, . . . , xn and output f(x1, . . . , xn) to all participants without revealing
any additional information. The simulator mediates the communications between the adversary and the
functionality, trying to simulate the real execution of the protocol. Moreover, in case the simulator does not
like how the interaction is developing, it can “rewind” the adversary to a previous state and replay the part
of the protocol until it is satisfied with the result.

Commonly, security with black-box simulation is defined by asking for the existence of a polynomial-
time simulator for which the information output by the adversary after interacting with the ideal world is
indistinguishable from the one it outputs after interacting with the real world. In stronger security models,
such as UC security, we require the simulation to be straightline: no rewinding is allowed!

With this indistinguishability-based definition, we are essentially saying that any attack the adversary
succeeds in performing against the protocol, can be converted into an attack against the ideal functionality,
a much simpler object whose security properties are significantly easier to analyse. If any vulnerability were
to be found in the protocol, it would be an intrinsic vulnerability: it would not be that the protocol is not
secure enough, the issue would be that what we are trying to compute is insecure in the first place!

In this thesis, we mostly deal with protocols in which the adversary is computationally bounded: it must
run in polynomial time. We talk about computational security when the ideal world and the real world
are only computationally indistinguishable. We talk about statistical security if instead the outputs of the
adversary in the two worlds are statistically indistinguishable. We talk about superpolynomial simulation if
the simulator is allowed to run in time O(T ) where T is a superpolynomial function of λ.

Computational assumptions. In this thesis, we sometimes rely on well-known cryptographic assump-
tions such as learning with errors (LWE) [Reg05], decisional Diffie-Hellman (DDH) [DH76] and quadratic
residuosity (QR) and decisional composite residuosity (DCR) over the Paillier group [Pai99].

• Learning with errors. Let q,K,M,B be positive integers where M can be greater than K. Let χ a
distribution over ZM where its samples have norm at most B. The LWE assumption takes place over a
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K-dimensional lattice over ZMq described by a matrix A $← ZM×Kq . In particular, the assumption states
that, for s $← ZKq and e $← χ, the value A · s+ e looks indistinguishable from the uniform distribution
over ZMq , even when A is public. The low-norm distribution χ is usually instantiated using a discrete
Gaussian. We refer to the quotient q/B as the modulus-to-noise ratio.
Given a modulus p ≤ q and an element x in Zq, we sometimes “round down” x to the modulus p. This
means computing the value c ∈ Zp that minimises |x− c · q/p|.

• Decisional Diffie-Hellman. Suppose that G is a large, abelian, multiplicative group generated by an
element g of order p (usually p is a prime). We say that DDH holds over G if, for random a, b, c

$← [p],
the tuples (g, ga, gb, ga·b) and (g, ga, gb, gc) are computationally indistinguishable.

• Quadratic residuosity and decisional composite residuosity over the Paillier group. Let N be the
product of two random, unknown, large primes p and q. The Paillier group is defined as Z∗N2 . The QR
assumption states that, for a random x

$← Z∗N2 , it is hard to distinguish between x and x2. The DCR
assumption, in a similar way, states that it is hard to distinguish between x and xN .
It is easy to see that the order of the Paillier group is N · φ(N) where φ(N) = (p− 1) · (q − 1) denotes
Euler’s totient function. In other words, the order of the group is always a multiple of 2N . From this
we understand that QR and DCR can hold only against computationally bounded adversaries: the
squares of Z∗N2 form a proper subgroup and so do the N -th powers. Finally, we observe that if p and
q are random safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are themselves primes,
the Paillier group is isomorphic to the direct product of additive groups Z2 × Z2 × ZN × Zp′·q′ . The
subgroup of 2N -th powers is therefore isomorphic to Zp′·q′ , which is cyclic. Under both QR and DCR,
a random 2N -th power is computationally indistinguishable from x

$← Z∗N2 .

One-way functions. A one-way function (OWF) consists of a function f that is hard to invert on random
instances in its image: given a random y, no PPT (probabilistic, polynomial time) adversary is able to
retrieve any x such that f(x) = y (except with negligible probability).

Puncturable PRFs. A puncturable PRF [KPTZ13, BW13, BGI14b] consists of a PRF where we can
erase all information concerning the evaluation at a particular point from the key. The key obtained is this
way is called a punctured key and it allows the correct evaluation of the PRF at all positions except the
punctured one. Moreover, even given the punctured key, the output of the original PRF at the punctured
position looks random.

Hash functions. An hash function is a keyed function Hhk that maps large inputs into short digests (or
hashes). The primitive guarantees that, if hk is sampled at random, it is infeasible that a PPT adversary
manages to find a collision, i.e., different strings x1 6= x2 such that Hhk(x1) = Hhk(x2).

Non-interactive commitments. Non-interactive commitments allow a protocol participant to commit
to a value without revealing it to anybody else (hiding property of the commitment). This is done by
broadcasting an object called the commitment. At a later point in time, the party can reveal the chosen
value along with a proof (often called opening). This proof can be validated along with the commitment
by any bystander. The procedure always succeed, if the committer behaved honestly. Furthermore, if the
committer misbehaves and broadcasts a value different from the one it chose earlier, the validation always
fails, even if the commitment was maliciously generated (biding property of the commitment).

Public-key encryption. Public-key encryption (PKE) [RSA78, DH76] consists of an encryption scheme
where the key (i.e. the information that allows encryption and decryption) is split in two parts: a public key
pk and a secret key sk (also called private key). The encryption procedure requires only the knowledge of the
public key pk. Decryption instead requires using sk. This primitive guarantees the privacy of the encrypted
communication even if the public key becomes public.

19



Fully homomorphic encryption. Fully homomorphic encryption (FHE) [Gen09, GSW13] consists of a
public-key encryption scheme in which it is possible to apply homomorphic operations on the ciphertexts: if
c is an encryption of x, by homomorphically applying a function f on the ciphertext, we obtain an encryption
of f(x), without having to know x or the secret key.

Multi-key FHE. Multi-key FHE [LTV12, MW16, AJJM20] consists of a form of FHE that allows homo-
morphic operations on ciphertexts encrypted under different public keys: given ciphertexts c1, . . . , cn under
public keys pk1, . . . , pkn, where ci hides a value xi, we are able to obtain a “joint ciphertext” encrypting
f(x1, . . . , xn). The decryption of the joint ciphertext is performed in two phases: first each participant per-
forms a partial decryption using their secret key, then the partial plaintexts are pooled together to reconstruct
the output.

Identity-based encryption. Identity-based encryption (IBE) [Sha84, ABB10] is a form of PKE where
the messages are encrypted under the identity of the recipient. Specifically, for every identity id, there exists
a secret key skid that allows the decryption of any ciphertext c produced under id. The knowledge of secret
keys for any other identities does not provide any help in decrypting c.

Non-interactive zero-knowledge proof. A non-interactive zero-knowledge proof (NIZK) is an object
that allows proving any statement to an external entity without revealing any additional information. For-
mally, the primitive is tailored to an NP relation R21 and always relies on a CRS. A prover knowing a pair
(x,w) ∈ R can generate a proof π for the statement x. Any other entity (called verifier) can check the
validity of the proof π. If the procedure succeeds, the verifier can be sure of the existence of a witness w
for x, i.e., (x,w) ∈ R (soundness of the NIZK). The primitive also guarantees zero-knowledge: the proof π
leaks no information about the witness w, nor anything else that cannot be computed directly from x. This
property is formalised by relying on a simulator: we ask that no PPT adversary can distinguish between
proofs that are generated following the protocol and simulated proofs that are produced using a trapdoor
hidden in the CRS but no witness.

We say that a NIZK is extractable if it is possible to use the trapdoor hidden in the CRS to extract a
witness from any valid proof produced by the adversary. In other words, given a valid proof π for a statement
x, we are able to extract a witness w such that (x,w) ∈ R. We say that a NIZK is simulation-extractable if
this property holds even if the adversary is helped in its task by an oracle providing simulated proofs.

Non-interactive witness indistinguishability. A non-interactive witness-indistinguishable proof
(NIWI) can be viewed as a NIZK satisfying soundness and a weaker form of zero-knowledge: we require
that for any statement x having multiple witnesses, it is infeasible to tell which witness was used for the
generation of the proof. Notice that if the witness w is unique, it is totally fine for a NIWI to just leak w.
Unlike NIZKs, it is possible to build NIWIs that do not use any CRS [BOV03, GOS06a, GOS06b, BP15].

Shannon entropy, strong chain rule and mutual information. Entropy measures the amount of
information contained in a random variable. The notion is tightly connected to the unpredictability of the
value the variable assumes. There exist many different definitions of entropy. The most famous is perhaps
Shannon’s entropy [Sha48]:

H(X) := −
∑
x

Pr[X = x] · log(Pr[X = x]).

It is possible to prove that the Shannon entropy H(X) expresses the size of the optimal representation for
X. In particular, if X is a distribution over a set of cardinality t, H(X) ≤ log t.

21An NP relation R consists of a set of pairs (x,w), for which there exists a polynomial-time algorithm that correctly classifies
whether (x,w) ∈ R or not. We call x the statement and w the witness.
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Given random variables X and Y , the conditional Shannon entropy H(X|Y ) measures the amount of
information contained in X but not in Y . The quantity is defined as

H(X|Y ) := −
∑
y

∑
x

Pr[X = x, Y = y] · log(Pr[X = x|Y = y]).

Shannon’s entropy and conditional Shannon entropy are linked by an important property called the strong
chain rule: for any variables X and Y , H(X,Y ) = H(X|Y ) + H(Y )22.

This fundamental equality led the way to the introduction of new information measures. For instance,
the mutual information I(X;Y ) := H(X)− H(X|Y ) measures the amount of information contained in both
X and Y . We can also define the conditional mutual information I(X;Y |W ) := H(X|W ) − H(X|Y,W ): it
measures the amount of information contained in both X and Y but not in W . Even more generally, we can
define I(X;Y ;Z|W ) := I(X;Y |W ) − I(X;Y |Z,W ). This can be viewed as the information simultaneously
contained in all of X, Y and Z but not in W .

Min entropy. Min entropy provides another measure of unpredictability. Given a distribution X, we
denote the min-entropy of X by H∞(X) := −maxx log(Pr[X = x]). In other words, if H∞(X) ≥ t, it means
that maxx Pr[X = x] ≤ 2−t. It is possible to prove that, for any variable X, we have H∞(X) ≤ H(X).

Yao entropy. Yao entropy HYao(X) [Yao82] measures how much a random variable can be compressed
in polynomial time without losing information. The notion is formalised using a pair of deterministic
polynomial-time algorithms (c, d). The first algorithm is called the compressor, takes as input a sample
from the random variable X and outputs a compressed representation s. The second algorithm is called the
decompressor, it takes as input s and its goal is to reconstruct the original sample from X.

As we did for Shannon’s entropy, we can generalise the notion: the conditional Yao entropy HYao(X|Y )
is defined similarly to HYao(X), however, this time the compressor and the decompressor are aided in their
task by a sample from Y (which may be correlated to X).

Lossy trapdoor functions. A lossy trapdoor function [PW08] consists of a function with two indistin-
guishable modes of operation: injective mode and lossy mode. When the function is in injective mode,
each element in its domain is mapped into a different value in the image. Moreover, using a trapdoor, it is
possible to efficiently invert the function. Notice that in an injective mode trapdoor function, the image has
the same size as the domain. When the trapdoor function is in lossy mode, this is no longer true: the image
is contained in a significantly smaller set (superpolynomial in size).

Extremely lossy functions. An extremely lossy function (ELF) [Zha16] can be viewed as a lossy trapdoor
function where the lossy mode is “extreme”: the image contains a polynomial amount of different elements.
The exact number depends on a polynomial q(λ) parametrising the lossy mode.

Actually, in an ELF, the lossy mode and the injective mode are unavoidably distinguishable. However,
security guarantees that the distinguishing advantage can be made an arbitrarily small inverse-polynomial
function: for any polynomial p(λ) and inverse-polynomial quantity δ(λ), there exists a polynomial q(λ) such
that no adversary running in time p(λ) can distinguish between the injective mode and the lossy mode with
advantage greater than δ(λ), when the lossy mode is parametrised by q(λ).

1.2.2 Semi-Honest Distributed Samplers
We start by presenting an overview of the semi-honest (actually non-rushing semi-malicious) distributed
sampler of [ASY22a] (see Section 2.4). Throughout the section, we will denote the number of parties by n
and the distribution from which we want to sample by D(1λ).

22H(X,Y ) is the entropy of the joint distribution (X,Y ).
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Compressing two rounds into one. Our starting point is a 2-round protocol ΠD where each party Pi
inputs a random string ri and the output is obtained by feeding the XOR of all inputs in D(1λ) in place of
the randomness. We require the protocol to be secure against rushing, semi-malicious adversaries. In other
words, the construction is secure even if the adversary maliciously chooses the randomness of the corrupted
players (as in the semi-honest setting, however, the corrupted players cannot deviate from the protocol).
For example, we can rely on the multi-key FHE construction of [AJJM20] or, as we did in [ASY22a], on a
weaker primitive called multiparty homomorphic encryption with private evaluation [AJJM20].

Our goal will be to compress the two rounds of the protocol into a single round, while at the same
time ensuring security against residual functions attacks (see the discussion on non-interactive MPC in
Section 1.1.3). Given that we want to implement an inputless functionality (see Figure 1.1), there is still
hope to achieve this: we just need to ensure that in every imaginary execution run in the head of the
adversary, the randomness fed into D(1λ) to produce the output looks independent of the randomness used
in all previous executions. In other words, if the adversary changes even just one of the messages exchanged in
the only round of interaction, the output that the protocol produces should look independent of all previous
ones.

We compress the two rounds by relying on indistinguishability obfuscation (iO) [BGI+01, GGH+13,
JLS21]. The message sent by each party Pi in the distributed sampler protocol will consist of two obfuscated
programs hiding the same puncturable PRF key Ki: the first one is called the encryption program (or, using
the terminology of [ASY22a], the key generation program), the second one is called the decryption program
(or, using the terminology of [ASY22a], the evaluation program). The encryption programs will take care of
generating the messages in the first round of ΠD, the decryption programs will instead generate the messages
in the second round. In this way, we obtain a virtual execution of ΠD using a single round.

The encryption program. More formally, the encryption program uses the PRF key Ki to generate the
input ri of party Pi. Then, using ri along with other randomness extracted from Ki, the program generates
Pi’s message for the first round of ΠD and outputs it. To ensure that different choices of the messages of the
other players lead to independently looking values for ri (therefore preventing residual function attacks), we
would like the encryption program to generate all randomness it necessitates by inputting the encryption
programs of the other players in its puncturable PRF (notice that the encryption programs of the other
parties fix PiD’s inputs of the other players). This, however, cannot occur due to a mere matter of sizes:
how can we fit n − 1 encryption programs in a program of exactly the same size? Instead of relying on
iO for Turing machines [KLW15, GS18a], we feed the encryption program of party Pi with a hash of the
encryption programs of the other players (we let Pi choose the hash key). The hash will then be input in
the puncturable PRF for the generation of ri and the rest of the necessary randomness. In order to make
the security proof go through, we need particular hash functions that are compatible with iO, for instance
we can rely on somewhere statistically binding hash functions (SSB) [HW15]. More in general, it would be
sufficient to have a hash function that can be programmed to have no collisions at the places hidden in the
key.

The decryption program. The decryption program of party Pi is fed with the encryption programs of
all other parties. By evaluating them, the program is able to retrieve all messages exchanged in the fictitious
first round of ΠD. Moreover, by leveraging the knowledge of Ki, the program is able to retrieve any secret
information computed by party Pi during the generation of its first-round message. Such information is
usually necessary to compute the message in the second round of ΠD. The decryption program will therefore
proceed by producing Pi’s message in the second round of ΠD, outputting it (the operation might require
additional randomness which can be extracted from Ki). To conclude, encryption programs and decryption
programs allow all participants to obtain a consistent transcript of the protocol ΠD using a single round of
interaction. If the output of ΠD can be computed from just the transcript (i.e. without having to leverage
any internal information known to the participants), we obtain a distributed sampler for D(1λ). If instead
this is not the case, we obtain a distributed sampler where the output can be retrieved only by the protocol
participants (party Pi can retrieve the output by leveraging the knowledge of Ki).
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Why is the construction secure against non-rushing semi-malicious adversaries? The answer
is rather simple: the distributed sampler we sketched above satisfies a form of programmability. Given the
randomness used by the other parties and any sample R $← D(1λ), we are able to generate the programs of
party Pi so that, when used in conjunction with the messages of the other parties, the final output is R.
We achieve this by relying on the security of iO and puncturable PRFs as done in [SW14]. In particular, we
need to puncture the key Ki in the hash of the encryption programs of the other players. At that point, we
just need to rely on the security of ΠD against rushing, semi-malicious adversaries.

On the relation between obfuscation and semi-honest distributed samplers. It is possible to
prove that (subexponentially secure) distributed samplers for any distributions (in conjunction with the
subexponential hardness of LWE with subexponential modulus-to-noise ratio) imply the existence of (subex-
ponentially secure) indistinguishability obfuscation. This result (never published in a paper) is obtained
following the blueprint of iO from oblivious LWE sampling proposed by Wee and Wichs [WW21]. In their
work, the authors showed how to build iO from (subexponentially hard) LWE, assuming the ability to com-
press LWE samples without leaking their secrets. In other words, we would like to compress many samples
of the form bi ← A · s + ei where A is a public random matrix, si is a secret uniformly random vector and
ei is a random low-norm vector (usually sampled from a discrete Gaussian distribution). We would like to
maintain the secrecy of all si, while allowing a simulator holding a trapdoor to efficiently recover them.

We achieve this by relying on public-key encryption (PKE) and semi-honest, two-party distributed sam-
plers. The compression consists of a pair (pk, U1), where (pk, sk) is a PKE key and U1 is a distributed sampler
message for the distribution D(1λ) outputting: (1) a random matrix A;(2) a batch of L LWE samples with
respect to A; (3) an encryption under pk of a trapdoor for A. The latter allows to retrieve all the LWE
secrets (si)i∈[L].

We can generate a large amount of secure LWE samples by generating multiple distributed sampler
messages Uj (using deterministically produced randomness for j = 2, . . . ,M) and computing the output of
the distributed sampler protocol in which one party sent U1 while the other sent Uj . As long as sk is kept
secret, the adversary cannot retrieve any information about the secrets hidden in the LWE samples. On the
other hand, by leveraging the knowledge of sk, a simulator can easily retrieve them.

This trick allows to compress M batches of L LWE samples into a string of poly(λ, L) length. Under
the security of the distributed sampler, each of these batches looks as if it was generated by D(1λ). Notice
that each batch is generated using a different LWE matrix. Although Wee and Wichs showed how to build
iO from an oblivious LWE sampler that produces all its samples using the same matrix A, it is not hard to
adapt their construction to our situation.

1.2.3 Actively Secure Distributed Samplers in the Random Oracle Model

We now explain how it is possible to upgrade the construction we just described to active security in
the programmable random oracle model. The operation is performed by relying on a compiler we called
anti-rusher. The latter allows the conversion of any one-round, inputless protocol with security against non-
rushing semi-malicious adversaries into a new one-round, actively secure protocol implementing a variation
of the same functionality in the programmable random oracle model.

Formally, if the original protocol implemented a functionality F, the compiled protocol implements the
functionality FActive which allows the adversary to try multiple executions of F and then choose the one
it likes the most among the proposed ones. Notice that the adversary has still a limited influence on the
protocol: it can choose only among a polynomial number of different executions. Observe also that, since
we are dealing with one-round, inputless protocols, in the non-rushing, semi-malicious model, the adversary
was still allowed to replay multiple executions of the protocol in its head (after seeing the real execution).
In other words, the leakage of FActive is the same as in F, what changes is the influence of the adversary on
the output! By compiling the sampling functionality FD (see Figure 1.1), we obtain the functionality FActive

D
in Figure 1.2.
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So, how do we build an anti-rusher compiler? Essentially, we rely on the techniques introduced by
Hofheinz et al. in [HJK+16], however, we apply them in a different context: Hofheinz et al. used them to
build universal samplers that guarantee security of all the samples they generate, even if they are produced
using multiple distributions adaptively chosen by the adversary. We apply them instead to beat rushing
behaviour in MPC protocols.

In order to compile a non-rushing semi-maliciously secure, one-round, inputless protocol Π, we let each
party Pi broadcast an obfuscated program hiding a puncturable PRF key Ki. The obfuscated program
will take care of generating the message of party Pi in Π using the randomness extracted from Ki. As
for the distributed samplers we saw in the previous section, we would like that different choices of the
messages of the corrupted players lead to independent-looking randomness used by the honest parties in the
recreated execution of Π. In this way, we prevent the adversary from adaptively choosing the messages of the
corrupted players in Π after seeing the messages of the honest parties. Once again, we ensure this property
by generating the randomness used in Pi’s program by feeding a hash of the exchanged messages into the
puncturable PRF. The only difference is that now we model the hash function using a programmable random
oracle.

How to simulate the protocol? Although the construction we described so far intuitively prevents
rushing in Π, it is unclear how to simulate the protocol while ensuring consistency with the outputs of
the functionality. In order to solve this problem, we modify the construction: first of all, we ensure the
wellformedness of the obfuscated programs by relying on extractable NIZKs [GO07] (if the CRS of the NIZK
is unstructured, we can generate it using the random oracle). Then, we exploit the random oracle to program
the output of the obfuscated circuits broadcast by the honest parties.

We equip the programs with a trapdoor: Pi’s program will hold a key K ′i for an authenticated encryption
scheme. All ciphertexts produced under this key will be indistinguishable from random oracle responses,
however, with overwhelming probability, truly-random oracle responses will not correspond to valid encryp-
tions. Upon receiving a random oracle response, the obfuscated program of party Pi will try to decrypt its
input using K ′i. When the operation fails (therefore with overwhelming probability, if the oracle response
was truly random), the program behaves as we described above: it generates Pi’s message in Π using the
randomness extracted from Ki and outputs it. If the decryption succeeds, on the other hand, the program
directly outputs the plaintext.

Proving security. Our proof strategy will be the following: whenever the adversary queries the oracle
with obfuscated programs, the simulator will extract the PRF keys hidden in them from the associated
NIZKs. From the keys, the simulator will be able to recover the randomness used by the programs of the
corrupted players for the generation of their message in Π. At that point, the simulator can rely on the
non-rushing, semi-honest security of Π: with the help of FActive, it can simulate the messages of the honest
players in Π. Finally, it crafts an oracle response so that the obfuscated programs of the honest parties
output these simulated messages. In other words, for each oracle query made by the adversary, the simulator
will start a new execution of F inside FActive. Once the adversary selects the messages for the corrupted
players, the simulator will instruct FActive to finalise the corresponding execution of F. More details on
anti-rushers compilers can be found in [ASY22a] (see Section 2.5).

1.2.4 Impossibility of Actively Secure Distributed Samplers in Absence of Ran-
dom Oracles

The actively secure distributed samplers we obtain by compiling our non-rushing semi-malicious construction
with an anti-rusher compiler is great, however, it also has a great disadvantage: it relies on a programmable
random oracle. In [AOS23] (see Chapter 3), we tried to build actively secure distributed samplers without
relying on idealised models: we ended up proving that, at least for UC security, this task is impossible.
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Our main result proves that, if the min-entropy23 of D is not small (i.e. H∞(D) = ω(log λ)), in any
one-round protocol implementing the functionality FActive

D against rushing semi-malicious adversaries, the
Shannon entropy of the output R conditioned on the CRS σ is small, namely H(R|σ) = O(log λ). Below, we
explain the intuition (for more information, check Section 3.2.1 and Section 3.4).

An overview of the ideal world. We consider the ideal world execution of a UC-secure distributed
sampler. We observe that, since we are dealing with a rushing adversary, the execution starts with the
simulation of the CRS σ and the messages of the honest parties UH . Only at that point, the simulator will
discover the messages UC chosen by the corrupted players. This fixes the output of the protocol R, however,
the task of the simulator is not finished: it needs to instruct the functionality FActive

D to output R to all
honest players.

Now, let Q be the set of samples provided by the functionality FActive
D to the simulator before σ and UH

are delivered to the adversary. This set will have polynomial size. We have two cases: either R belongs to Q,
or it does not! In the first situation, the simulator has an easy life: it can just tell the functionality to output
the previously sampled element R. If instead R does not belong to Q, the only option for the simulator is to
query the functionality for samples until it hits R (since we are in the UC model, we cannot rewind). The
probability of this event, however, is negligible as H∞(D) = ω(log λ).

We conclude that in the ideal world execution of a UC-secure distributed sampler, the CRS and the
messages of the honest parties restrict the output in a set of polynomial size. In particular, this implies that,
in the ideal world, H(R|UH , σ) = O(log λ).

An overview of the real world. Consider the rushing adversary that behaves honestly: it generates the
messages of the corrupted parties following the protocol and using true randomness, but reveals UC only
after seeing σ and UH . We wonder whether H(R|UH , σ) = O(log λ) even in the real world. Notice that the
Shannon entropy is usually not preserved under computationally indistinguishability24. Therefore, it may
be that, in the real world, H(R|UH , σ) = ω(log λ).

We prove that if this is the case, there exists an efficient distinguisher between the real world and the
ideal world. The algorithm is rather simple: the distinguisher reruns the protocol in its head many times
reusing the same CRS and honest messages UH as in the actual execution, but regenerating every time the
messages of the corrupted players. It then counts the number of different outputs it obtains in this way. We
have seen that, in the ideal world, the CRS and the honest messages restrict the output in a set of polynomial
size. Therefore, the number of different samples stops growing after a while. On the other hand, in the real
world, if H(R|UH , σ) = ω(log λ), we prove that the number of different samples keeps growing.

A look at the entropy diagram. We show that, in the real world, H(R|σ) = O(log λ). We start by
summarising what we know about the entropy of the random variables involved in the protocol:

• Since the output R is uniquely determined by σ, UH and UC , we conclude that H(R|UH , UC , σ) = 0.

• Since we are considering a honest-but-rushing adversary, UH and UC are independent of each other,
conditioned on the knowledge of σ. Using the language of mutual information, I(UH ;UC |σ) = 0.

• Due to what we argued in the previous paragraphs, H(R|UH , σ) = O(log λ).

• Since the adversary behaves as the honest parties, by symmetry, H(R|UC , σ) = O(log λ).

23Notice that asking that H∞(D) = ω(log λ) is a very weak requirement: we are essentially saying that any guess for the
output of D is wrong with overwhelming probability. All CRSs of MPC protocols satisfy this property.

24Computationally indistinguishable random variables can have significantly different Shannon entropy.
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We conclude the proof by relying on the strong chain rule of Shannon entropy:

H(R|σ) = H(R|UH , σ) + I(R;UH |σ)

= H(R|UH , σ) + I(R;UH |UC , σ) + I(R;UH ;UC |σ)

= H(R|UH , σ) + H(R|UC , σ)− H(R|UC , UH , σ)︸ ︷︷ ︸
0

+I(R;UH ;UC |σ)

= H(R|UH , σ)︸ ︷︷ ︸
O(log λ)

+H(R|UC , σ)︸ ︷︷ ︸
O(log λ)

+ I(UH ;UC |σ)︸ ︷︷ ︸
0

−I(UH ;UC |R, σ).

Since the mutual information between two random variables is always non-negative, I(UH ;UC |R, σ) ≥ 0. We
conclude that

H(R|σ) ≤ H(R|UH , σ) + H(R|UC , σ) = O(log λ).

Corollary: the CRS is not reusable. We discuss the first corollary of the main impossibility: when
H(R|σ) = O(log λ), the CRS of the distributed sampler is not reusable. If the CRS was reusable, we would
expect that the outputs of independent distributed sampler executions reusing σ look like independent
samples from D. We prove however that this is not the case (for more information, check Section 3.2.1 and
Section 3.4.1).

We rely on the collision entropy H2(R|σ): the latter measures the probability that, if we rerun the
distributed sampler twice reusing the same CRS σ, we obtain colliding outputs R = R′. Formally, H2(R|σ) =
− log(Pr[R = R′]). A well-known result in information theory (an easy application of Jensen’s inequality)
shows that collision entropy is always smaller than Shannon’s entropy. We therefore conclude that H2(R|σ) ≤
H(R|σ) = O(log λ). In other words, the probability of colliding outputs in two distributed sampler executions
with the same CRS is inverse-polynomial. Notice that since we are considering a distribution D such that
H∞(D) = ω(log λ), the probability that D generates collisions is negligible.

Corollary: the CRS cannot be short. We show that, when H(R|σ) = O(log λ), the CRS has roughly
the size of the output. More formally, |σ| ≥ HYao(D)−O(log λ). The Yao entropy [Yao82] HYao(D) measures
how much a sample from D can be compressed in polynomial time without losing information. In other words,
HYao(D) provides a good approximation how the most succinct representation of the samples produced by
D (for more details, check Section 3.2.1 and Section 3.4.2).

We prove our result we start by showing that if H(R|σ) = O(log λ), then HYao(R|σ) = O(log λ). To
conclude our argument, we would like to rely on the chain rule for Yao entropy [KPW13, Appendix B],
which states that HYao(R|σ) ≥ HYao(R)− |σ|. At that point, we are done: it is sufficient to recall that Yao’s
entropy is preserved under computational indistinguishability. Since, in the ideal world, when all parties are
honest, the distribution of R is exactly D, we conclude that HYao(R) = HYao(D).

There is however a problem: in [KPW13, Appendix B], the authors prove the chain rule for Yao entropy
by building a compressor for R, given an efficient compressor for R conditioned on the correlated σ. The
issue is that the compressor they build for R is not polynomial-time, its running time is exponential in the
size of the CRS! Their idea is the following: let (c, d) be the compressor-decompressor pair for R conditioned
on σ. To compress R, brute force for a σ such that d(c(R, σ), σ) = R, then output c(R, σ), σ.

In the context of distributed samplers, we observe that we do not need to perform a brute force search to
find the correlated σ: it is sufficient to generate the CRS by feeding R into the simulator of the distributed
sampler protocol (we simulate an execution in which all parties are honest). In this way, the compressor
runs in polynomial time.

Corollary: the CRS cannot be nice. We show that when H(R|σ) = O(log λ), the CRS of the distributed
sampler cannot be unstructured unless D is obliviously samplable, i.e., we can generate secure samples from
D by just relying on public random coins (no interaction is needed).

We show this by proving a slightly more general result: if H(R|σ) = O(log λ), it is possible to generate
secure samples for D with no interaction, given just sufficiently many CRSs for the distributed sampler and
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public random coins. The idea is the following: to sample from D, take one of the given CRSs and run
the distributed sampler protocol generating the messages of the parties using the public randomness. We
will denote this distribution by D′. The question is: why is the produced sample secure? We need to show
the existence of a PPT simulator that, given the sample R, outputs a CRS and public random coins that
produce R.

To simulate the CRS, we simply feed R in the simulator for the distributed sampler protocol (we simulate
an execution in which all parties are honest). How can we simulate the public random coins, however? After
all, recovering them from the simulated messages is infeasible! We solve the problem by relying on the first
corollary we presented: if we rerun the distributed sampler protocol without changing the CRS, we end up
with the same output with inverse-polynomial probability. Therefore, all we need to do is to retry running
the protocol again and again with the same CRS until we obtain R.

There is an issue, however: the probability of colliding outputs in the first corollary is taken also over the
randomness producing the sample R. In other words, the probability of successfully inverting a sample from
D′ is on average inverse-polynomial. That means that there could exist a polynomial (but not overwhelming)
fraction of all samples R for which the probability of inverting is extremely low! Our simulation strategy
succeeds only when we are not dealing with one of these bad samples. Luckily, we are easily able to tell
apart good samples from bad samples: we simply try to invert them! If we succeed sufficiently often, we
are dealing with a good sample, otherwise not. To conclude, we modify the sampling algorithm D′: the
algorithm will be given many CRSs for the distributed sampler and public random coins. It will produce
many samples by running the distributed sampler once for every CRS, generating the messages using the
public randomness. Then, it will test the results and output the first good sample it finds. In other words,
D′ will produce secure good samples. Notice that we can use good samples in place of any CRS generated
according to D. This is because a sample from D is good with inverse-polynomial probability25. For more
details, we refer to Section 3.2.1 and Section 3.4.3.

On the generality of the impossibility. The main disadvantage of the lower bounds we just sketched
is that our argumentations hold only in the universal composability model [Can01]. We believe however
that the results should generalise to security with black-box simulation. Furthermore, also super-polynomial
simulation and honest-majority do not seem to help us get around the impossibility. Below, we sketch the
ideas at the base of our intuition:

• Super-polynomial simulation. Consider the ideal world execution of the protocol and suppose that
we are in the UC model, but the simulator runs in super-polynomial time O(T ). Suppose also that
H∞(D) = ω(log T ) (otherwise, the trivial distributed sampler in which all parties output the most
likely element in the support of D would (almost) be secure). We argue that the distributed sampler
output chosen by the adversary must belong in the set Q of samples received by the simulator before
sending UH and σ. If that was not the case, the only possibility left for the simulator is to keep asking
for samples until the functionality hits the expected output. Since H∞(D) = ω(log T ), the probability
of this event is negligible. Therefore, as for polynomial-time simulation, UH and σ restrict the output
in Q with overwhelming probability. Actually, we argue something stronger: UH and σ restrict the
output in a subset of Q having polynomial size (the size of Q is O(T )). The reason is simple: UH
and σ can be viewed as an encoding of the subset of outputs in Q the adversary can get out of them.
Since UH and σ have polynomial size, the entropy (and therefore the size) of this subset should be
polynomial! Given this observation, we can prove all our lower bounds as we did for polynomial-time
simulation.

• Honest majority. Suppose we are once again in the UC model, the simulator runs in polynomial
time, but the adversary can corrupt at most t parties out of n. If we retrace our impossibility for
the dishonest majority setting, we observe that the argument fails only towards the end: the fact that
H(R|UH , σ) = O(log λ) does not imply that H(R|UC , σ) = O(log λ). This is because we cannot consider

25If a protocol was insecure when the CRS is a good sample, the protocol would be insecure with inverse-polynomial probability
when the CRS comes from D.
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the protocol execution in which the roles of honest and corrupted parties are switched: we would pass
from an honest majority to a dishonest majority. There is however another way to get around the
problem: suppose that we manage to prove that there exists a constant τ > 0 such that there always
exist a subset H of at least n− t+ 1 parties such that H(R|UH , σ) ≥ H(R|σ)/τ , then we immediately
obtain that H(R|σ) ≤ O(log λ).
I conjecture that τ = n/t. To support this argument, observe that if the corruption threshold is
particularly low, we can build distributed samplers that do not need any CRS. For instance, if n = λ
and t = log λ (therefore n/t = ω(1)), we can design a standalone-secure distributed sampler for the
uniform distribution over {0, 1}λ: each party Pi chooses the i-th bit of the output at random and
broadcasts its choice. The parties output the concatenation of the broadcast bits (for simulation, we
need to rewind).

• Standalone security with black-box simulation. Suppose that we are again in presence of an adversary
corrupting a dishonest majority of participants. The simulator still runs in polynomial time with
black-box access to the adversary, however, we let it rewind it. If we retrace our impossibility proof
for the UC model, we observe that our arguments fail quite soon: it is unclear whether UH and σ
restrict the output in Q with overwhelming probability! What we know is that they do it with at least
inverse-polynomial probability. Indeed, if the output chosen by the adversary does not belong to Q,
the simulator can rewind and retry.
Now, consider the set Ω of all outputs an honest adversary can get once fixed σ and UH . For any
inverse-polynomial q, we can consider two subsets of this space: elements that the adversary obtains
with probability greater than q (call it Ω1

q) and elements that the adversary obtains with probability
at most q/2 (call it Ω2

q). Observe that we can tell if a given element belongs to Ω1
q or Ω2

q by simply
estimating its probability by running some trials (apply the Chernoff bound).
Now, if the probability of the output belonging to Ω2

q is negligible, it means that σ and UH restrict the
output in a set of polynomial size: the complementary of Ω2

q (it contain at most 2/q elements). So, we
can reprove all the impossibilities we saw for the UC model.
If instead the probability of the output belonging to Ω2

q is non-negligible, intuitively, we can obtain a
distinguisher between the real world and the ideal world by checking whether the output of the sampler
belongs to Ω1

q or not. Since the simulator ensures that the output belongs to Q and a good portion of
elements in Q occurs with relatively high inverse-polynomial frequency, the probability of the output
belonging in Ω1

q in intuitively larger in the ideal world.

1.2.5 New Definitions for Actively Secure Distributed Samplers
In [AWZ23a], we tried to get around the impossibilities we just finished describing. Our work ended
up introducing two new game-based security definition: hardness-preserving distributed samplers and
indistinguishability-preserving distributed samplers (collectively referred to as security-preserving distributed
samplers).

Hardness-preserving distributed samplers. Hardness-preserving distributed samplers preserve the
hardness of search games based on the sample they produce, even in presence of an adversary maliciously
corrupting a proper subset of their participants. More formally, imagine a search game in which an adversary
is provided with a sampleR from a distributionD(1λ) and needs to find some value T (for instance a trapdoor)
related to R. Suppose that the game is hard: any PPT adversary will fail in finding T with overwhelming
probability. Then, we would like that if we generate R using a distributed sampler, the search game still
remains hard, even if a subset of participants in the protocol is maliciously corrupted. Hardness-preserving
distributed samplers ensure exactly this.

Formally, the primitive is defined by relying on a real world/ideal world paradigm. In the real world,
we let a PPT adversary run the distributed sampler, maliciously controlling a subset of participants. At
the end of the game, we provide the adversary with the output of the protocol execution R (notice that
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the adversary would be able to compute R by itself). In the ideal world, on the other hand, the adversary
interacts with a simulator, which is being provided an ideal sample R′ $← D(1λ). At the end of the protocol,
the adversary is given R′ (which may or may not coincide with the output of the distributed sampler).

Importantly, we do not ask the real world to be indistinguishable from the ideal world! The two worlds
will be clearly distinguishable: in the ideal world, there is high probability that R′ will not coincide with
the output of the distributed sampler! We ask instead that, if the adversary outputs 1 with non-negligible
probability in the real world, so it will in the ideal world. Notice that this implies that, in the ideal world,
R′ coincides with the output of the protocol with non-negligible probability!

So, why does this security definition suffice to preserve the hardness of search games? The idea is simple:
suppose this is not the case. In particular, that means that there exists a PPT adversary A that wins the
search game with non-negligible probability when the sample R is produced by the distributed sampler. We
can derive a new adversary A′ which, after running the distributed sampler, runs the search game with
A on the produced sample R and outputs 1 if A succeeds. This adversary outputs 1 with non-negligible
probability in the real world execution of the hardness-preserving distributed sampler, so it must do the same
even in the ideal world execution. We however reach a contradiction: in the ideal world, the search game
is played on R′, a true sample from D(1λ)! The probability of winning the game in this case is negligible!
For more details on the definition of hardness-preserving distributed samplers, we refer to Section 4.2.1 and
Section 4.5.1.

Indistinguishability-preserving distributed samplers. Hardness-preserving distributed samplers do
not necessarily preserve the functionality of the protocols they compile. Indeed, consider a protocol Π relying
on a CRS R $← D(1λ). Suppose that Π implements a functionality F against active adversaries and let S
be the corresponding simulator. If the protocol compiled using the distributed sampler Π′ still implemented
F, how could we build a simulator for it? It is natural to try by relying on S. The main issue, however, is
that it is common for simulators to embed trapdoors in the CRSs they produce, which they later leverage
to simulate the rest of the MPC construction: S can behave exactly in this way! In these cases, if we want
to rely on S, we would need to simulate the execution of the distributed sampler so that, whichever sample
gets chosen by the adversary, we are able to recover the relative trapdoor for S to complete the simulation.
In a hardness-preserving distributed sampler, it is not only unclear how to achieve this, it could also be
that the produced samples do not hide any trapdoor the simulator can use! For instance, the sampler could
generate random tuples of group elements (g1, g2, g3, g4), whereas the simulator could require a CRS of the
form (g1, g2, g

α
1 , g

α
2 ) and the relative trapdoor α: under DDH the distributions are indistinguishable, but

only one of them hides the desired trapdoor.
To solve these problems, we introduced a new notion: indistinguishability-preserving distributed samplers.

This primitive allows compiling Π while preserving the functionality, if particular conditions are satisfied.
Formally, we require that S provides the simulated CRS to the adversary before interacting with the function-
ality (in other words, the simulated CRS is independent of any information known to F but not to S). This
is a property satisfied by many MPC constructions (for instance, consider the HSS protocol of [OSY21]).

Notice that if we want to preserve the functionality, it is intrinsic to require additional properties: we
cannot hope indistinguishability-preserving distributed samplers to work for any protocol. If that was the
case, by compiling the trivial protocol where the all the parties output the CRS R $← D(1λ), we would obtain
an actively secure, one-round construction implementing the functionality FD in Figure 1.1. This not only
violates all the lower bounds we discussed in Section 1.2.4, it even contradicts Cleve’s result [Cle86].

Indistinguishability-preserving distributed samplers are defined relatively to a pair of computationally
indistinguishable distributions (D,D′), where D′ produces a trapdoor along with its sample. For intuition,
regard them as the distribution of the CRS in Π and the distribution of the CRS simulated by S, respectively.
The distributed sampler will have two indistinguishable modes of operation: in the real mode, it will produce
samples from D, while, in the simulated mode, it will generate samples from D′. Furthermore, in simulated
mode, by leveraging a backdoor, we can efficiently retrieve the trapdoors embedded in the samples chosen
by the adversary. To summarise, we can build a simulator for the compiled protocol Π′ by running the
indistinguishability-preserving distributed sampler in simulated mode followed by an execution of S (after
providing it with the trapdoor embedded in the sample chosen by the adversary). For more details on the
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definition of hardness-preserving distributed samplers, we refer to Section 4.2.1 and Section 4.5.2.
Remark. Indistinguishability-preserving distributed samplers always need a CRS. If that was not the case,
we could obtain an actively secure, 3-round OT protocol with black-box simulation in the plain model by
compiling the 2-round construction by Peikert, Vaikuntanathan and Waters [PVW08] (actively secure, 3-
round OT with black-box simulation in the plain model is known to be impossible [HV16]). Given this
result, our goal is therefore to construct indistinguishability-preserving distributed samplers relying on a
the simplest CRS possible: reusable, unstructured and of length independent of D, D′ and the number of
participants.

1.2.6 Building Security-Preserving Distributed Samplers
In [AWZ23a], we build security-preserving distributed samplers by relying on a new type of distributed
samplers we called lossy distributed samplers.

Lossy distributed samplers. Lossy distributed samplers have two modes of operation: standard mode
and lossy mode. When the distributed sampler is in standard mode, the set of possible outputs Ω an adversary
can obtain once the CRS (if this exists) and messages of the honest parties are fixed, is large, superpolynomial
in size (Ω is often called the support). From an entropy perspective, H(R|UH , σ) = ω(log λ).

When the distributed sampler is in lossy mode, instead, the support Ω is small: its size is upper bounded
by a polynomial q parametrising the lossy mode. Again, from an entropy perspective H(R|UH , σ) = O(log λ).

Most importantly, the two modes of operations are not indistinguishable! If the sampler is in lossy mode,
an adversary that keeps rerunning the protocol in its head changing the messages of the corrupted parties but
not the rest, will soon start seeing a lot of repeated outputs (because Ω is small). This, on the other hand,
will not happen if the sampler is in standard mode (Ω is big). Instead of asking for indistinguishability, we
define security similarly to what Zhandry did for ELFs [Zha16]: we ask that, by parametrising the lossy mode
with a sufficiently large polynomial q, we can make the distinguishability advantage between the two modes
an arbitrarily small inverse-polynomial function. Formally, for every polynomial p(λ) and inverse-polynomial
quantity δ(λ), there should exist a polynomial q(λ) for which no adversary running in time at most p(λ)
can distinguish the two modes of operation, where the lossy mode is parametrised by q(λ), with advantage
greater than δ(λ). This similarity between lossy distributed samplers and ELFs is not a coincidence: ELFs
will be the base of our construction.

We are interested in lossy distributed samplers that satisfy an additional property: programmability. In
a programmable distributed sampler set in lossy mode, it is possible to hide an ideal sample26 R $← D(1λ)
in the support Ω. In particular, due to the small size of the support in lossy mode, there exists an inverse-
polynomial probability that the adversary ends up choosing the ideal sample R as the output of the protocol
without even realising! For more details, we refer to Section 4.2.1 and Section 4.6.

From lossy to hardness-preserving distributed samplers. Any programmable, lossy distributed
sampler is also hardness-preserving. Proving it is rather simple: in the real world, the sampler will be run
in standard mode; in the ideal world, on the other hand, the sampler will be set in lossy mode and we rely
on programmability to hide the ideal sample R′ (the one given to the simulator) in the support.

The proof relies on a hybrid argument. Suppose we deal with a PPT adversary A that, after interacting
with the standard mode of the sampler and being provided with the output of the protocol, outputs 1 with
non-negligible probability.

• We start by switching the distributed sampler to lossy mode: all of the sudden the size of the support
shrinks to polynomial, however, the distinguishing advantage between this hybrid and the starting
point is non-negligible. This is not an issue: by choosing sufficiently large parameters of the lossy
mode, we can still ensure that A outputs 1 with non-negligible probability.

26We use the term “ideal sample” to denote a sample produced by D(1λ) in contrast to an object that is computationally
indistinguishable from it.
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• Next, we rely on programmability and we hide an ideal sample R′ $← D(1λ) in the support of the lossy-
mode distributed sampler. This hybrid is indistinguishable from the previous one, so A still outputs 1
with non-negligible probability. Furthermore, with inverse-polynomial probability, the adversary ends
up choosing R′ as output of the protocol without even realising.

• In the final hybrid, corresponding to the ideal world execution of the hardness-preserving game, instead
of providing the adversary with the output of the sampler, we provide it with R′. With inverse-
polynomial probability, this is still the correct output and, conditioned on this event, the adversary
still outputs 1 with non-negligible probability.

We conclude with two observations: the first one is that the simulator for the hardness-preserving dis-
tributed sampler will depend on the adversary due to the parameters of the lossy mode. The second obser-
vation is that our hardness-preserving distributed sampler suffers from a polynomial security loss. This is
unavoidable because, in all hardness-preserving distributed samplers, the adversary can always perform the
attack we saw in our impossibilities: it tries a polynomial number of executions by regenerating the messages
of the corrupted players and then chooses the one with the outcome it likes the most. For more details, we
refer to Section 4.2.1 and Section 4.8.

Building lossy distributed samplers: the construction. Our idea is to rely on ELFs [Zha16]. We
would like to modify our semi-honest distributed samplers (sketched in Section 1.2.2) by equipping the
construction with an ELF. When the ELF is in injective mode, the distributed sampler will have a large
support (superpolynomial in size); when the ELF is in lossy mode, the support will be small.

Recall that our semi-honest (actually, non-rushing semi-malicious) construction was obtained by com-
pressing a 2-round sampling protocol ΠD with security against rushing semi-malicious adversaries into a
single round (we call this the virtual execution of ΠD). We did this by relying on two obfuscated programs:
the encryption program, which took care of generating the messages in the first round of ΠD, and the de-
cryption program, which took care of the second round of ΠD. We also recall that the construction satisfied
a particular property we called programmability (not the same as for lossy distributed samplers): if we know
in advance the randomness chosen by the other parties, we can ensure that the encryption and decryption
programs of party Pi produce their outputs using the simulator for ΠD (let it be SD). In other words,
knowing the randomness of the corrupted players in advance allows us to control the output of the protocol.
This was sufficient to achieve security against non-rushing semi-malicious adversaries.

So, where shall we put the ELFs? Our idea is to let them appear only when the distributed sampler is set
in lossy mode: we pick an honest party Pi and we modify its programs so that Pi’s messages in the virtual
execution of ΠD are always generated using the simulator SD. Notice that in order to simulate the second
round in ΠD, SD needs to receive a sample R $← D(1λ) from the functionality. This will be the output of
the lossy distributed sampler! We let Pi’s decryption program generate this samples using the randomness
produced by a (puncturable) PRF key K̂ and the ELF: first we apply the ELF on the concatenation of the
encryption programs, then we feed the result in the puncturable PRF.

Three observations: (1) if the ELF is in injective mode, the samples provided to SD will look random
and independent of those generated in the other executions of the decryption program; (2) if the ELF is in
lossy mode, the support of the lossy distributed sampler will be polynomial in size (at most one possible
output per element in the image of the ELF); (3) using standard techniques based on iO and puncturable
PRFs [SW14], we can hide an ideal sample in the support (just pick a random element in the image of the
ELF and puncture the PRF in that point). The third property will give us programmability27!

There is a problem: in order for SD to succeed, it also needs to know the randomness used by the other
parties in the virtual execution of ΠD (this is because ΠD is only semi-maliciously secure). How do we allow
the decryption program of party Pi to recover them? We observe that the randomness used by the other
parties in the virtual execution of ΠD is determined by the PRF key (Kj)j 6=i hardcoded in their encryption
programs. The decryption program of party Pi receives all these programs as input, so it is just a matter of

27We need to require the ELF to be regular [Zha16]. In a regular ELF, the uniform distribution over the inputs is mapped
statistically close to the uniform distribution over the image.
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extracting the hidden keys from them. We do this by relying on extractable NIZKs: the parties will prove
the wellformedness of their encryption programs using these NIZKs. Along with the encryption programs
of the other parties, each decryption program will also obtain the associated NIZKs. If the sampler is in
standard mode, the decryption programs will simply verify the NIZKs, outputting ⊥ whenever the procedure
fails. If instead, the sampler is in lossy mode, Pi’s decryption program will try to extract the witness from
the proofs. If the procedure fails, the program will output ⊥, otherwise, it will use the extracted PRF keys
to run SD. For more details, we refer to Section 4.2.2 and Section 4.7.

Building lossy distributed samplers: proving security. We want to prove that, if we set the ELF is
injective mode, Pi’s message in the lossy-mode distributed sampler is indistinguishable from the one sent in
the standard-mode execution. This would be sufficient to prove the security of our construction (to prove
that the distinguishing advantage between lossy mode and standard mode can be made an arbitrarily small
inverse-polynomial amount, we can just apply th security properties of the ELF). We do this by relying on the
subexponential security of iO and of the protocol ΠD (for instance, if we build ΠD using the multi-key FHE
construction of [AJJM20], we achieve subexponential security). Specifically, by repeating the same hybrid
argument for every choice of the randomness of the other parties (for instance, as done in [HIJ+17]), we can
slowly transition from the programs that generate the messages in the virtual execution of ΠD honestly, to
programs that always rely on SD.

There is however another issue: there are too many choices for the randomness of the other parties.
So many, that it is impossible to choose the security parameters of the primitives we used without making
Pi’s programs explode: the size of Pi’s encryption program would need to be greater than the size of the
other parties’ programs! Obviously, this is a problem: the message of any party should look independent on
whether the party is honest or not!

We solve the issue by requiring each party to generate the randomness they use by expanding a λ-bit
PRG seed! The NIZKs will enforce this behaviour to all parties: the total entropy in the messages becomes
therefore n ·λ (n denotes the number of participants). When the sampler is in lossy mode, Pi will leverage a
trapdoor in the NIZK CRS to deviate from the protocol without being detected: it will generate its message
using randomness of entropy significantly greater than n ·λ, increasing the security of Pi’s programs without
making their size explode! For more details, we refer to Section 4.2.2 and Section 4.7.

Almost everywhere extractable NIZKs. There is still a technical issue in our security proof: when
we move from the standard mode to the lossy mode of the distributed sampler, we switch from a program
that verifies the provided NIZKs to a program that tries to extract the witnesses from them. An adversary
can therefore try to distinguish between the two worlds by trying to generate a proof that verifies, but
does not allow the extraction of the witness. This task is hard, so intuitively, obfuscation prevents it from
distinguishing the two types of programs. If we look a little bit more in detail, however, we notice an issue:
indistinguishability obfuscation does not seem to suffice to argue this, we would need to rely on stronger forms
of obfuscation such as ideal and virtual black-box obfuscation (known to not exist [BGI+01]) or differing-
input obfuscation (diO) [BGI+01] (for which different results suggest its impossibility [GGHW14, BSW16]).

Instead of walking that road, we instead rely on a stronger form of extractable NIZKs that is compatible
with indistinguishability obfuscation. We called this new primitive almost-everywhere extractable NIZKs.

The idea is to rely on the result of Boyle, Chung and Pass [BCP14]: they proved that if two programs have
only polynomially-many differing inputs and these are all hard to find, then indistinguishability obfuscation
is sufficient to make the two programs indistinguishable. We observe that the result can sometimes be
generalised to a superpolynmial number of differing inputs by relying on subexponentially secure iO: suppose
that all prefixes of differing inputs lie in a set of superpolynomial size L, and finding one of these prefixes
is hard even for adversaries running in O(L) time, then subexponentially secure iO is enough to make the
two programs indistinguishable. To leverage this trick, in an almost everywhere extractable NIZK, all proofs
that verify without allowing the extraction of the witness will have a prefix in a set of size L. All elements
in this set will be hard to find even for adversaries running in time O(L).

We build these NIZKs by relying on a subexponentially secure injective one-way function (OWF). The
CRS of the construction will consists of a OWF challenge and a PKE public key pk: all NIZKs that verify
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but do not allow the extraction of the witness will begin with a (perfectly binding) commitment to the
preimage of the challenge in the CRS. In other words, the number of possible prefixes of these proofs will be
at most 2` where ` denotes the length of the randomness needed by the commitment scheme. We can choose
the security parameter of the one-way function so that it remains secure even against adversaries running in
time O(2`).

Along with the commitment, each proof will include also an encryption under pk and a perfectly sound
witness-indistinguishable proof (NIWI) [BOV03, GOS06a, GOS06b, BP15]. The NIWI will prove that either
the commitment hides a preimage to the OWF challenge in the CRS or the ciphertext hides a valid witness
for the statement. In other words, to extract the witness it is sufficient to decrypt the ciphertext using
a trapdoor: the secret counterpart of pk. Notice that we need to rely on a perfectly correct public key
encryption scheme, otherwise the number of prefixes of NIZKs that verify without allowing extraction would
increase significantly. Notice that the CRS of our scheme is reusable and depends only on the security
parameter λ. Furthermore, we can instantiate the construction so that the CRS becomes unstructured.

Identity-based almost everywhere extractable NIZKs. There is still one last issue: ideally, we would
like to build a distributed sampler in which the CRS is reusable across different sets of participants. It is
therefore tempting to rely on a single instance of the almost everywhere extractable NIZK and let all the
parties prove the wellformedness of their message with respect to the same small CRS. However, how can the
two variants of decryption program (the one that simply verifies the NIZKs and the one that instead extracts
the witnesses) be indistinguishable if we simulate the NIZKs of the honest parties? If all parties prove security
with respect to the same CRS, the simulated NIZKs can be easily converted into a differing input! The issue
is slightly more general: our NIZK construction is not necessarily simulation-almost-everywhere-extractable.
In other words, in the security proof of our distributed samplers, we can switch from the hybrid in which Pi’s
decryption program simply verifies the NIZKs to the hybrid in which the program extracts the witnesses,
only as long as we do not provide the adversary with any simulated NIZK! The issue is that, once we have
modified the decryption program, we cannot switch to a simulated NIZK anymore: in order for the modified
decryption programs to extract the witnesses, they need to use a trapdoor. We can hope to rely on the
zero-knowledge properties of the NIZK only as long as the trapdoor remains secret, however, in our protocol,
we provide it to the adversary in obfuscated form as part of the decryption program of party Pi. It is unclear
whether this is a real security threat, however, it prevents our security proof from going through.

We solve the problem by making the construction identity-based. Suppose that all participants are
associated with a unique identity. We substitute the public-key encryption scheme in our construction with
(perfectly correct) identity based encryption (IBE) [Sha84, ABB10]: the parties will generate the ciphertexts
in their proofs by encrypting their witnesses under their own identity. With this modification, we solve the
issue we described above: the decryption program of party Pi does not need to know the IBE master secret
key, it just needs to know the decryption keys associated with the identity of the other participants! Notice
that even if these trapdoors are leaked, the ciphertexts in Pi’s proofs cannot be decrypted (by the security
of IBE), so we can still rely on zero-knowledge. For more details on almost-everywhere extractable NIZKs,
we refer to Section 4.2.6 and Section 4.4.
Remark. Another way to deal with NIZKs that verify but do not allow the extraction of their witness
without giving up on indistinguishability obfuscation, is to rely on statistical simulation extractable NIZKs
as done in [HIJ+17]. In these NIZKs, we can hide a statement in the CRS. The construction guarantees that
we can generate simulated proofs only for the statement hidden in the CRS. This solution has however a
disadvantage compared to almost everywhere extractable NIZKs: their CRS is as big as the statements and
is not reusable!

Building indistinguishability-preserving distributed samplers. It turns out that our lossy dis-
tributed sampler is also indistinguishability-preserving. The proof is based on a hybrid argument we sketch
below. Suppose we want to compile a protocol Π that relies on a CRS R $← D(1λ). Let F be the function-
ality it implements and let S be the associated simulator. Let D′(1λ) be the trapdoored distribution of the
simulated CRSs. We start from the real world execution of the compiled protocol Π′.
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• In the first hybrid, we switch the distributed sampler to lossy mode. All of a sudden, the support
becomes of polynomial size. However, the distinguishing advantage between this hybrid and the original
protocol execution is an inverse-polynomial quantity ε1(λ). We will see why this not an issue.

• In the next hybrids, we gradually change the distribution of the samples that the lossy-mode decryption
program feeds into SD. Recall that these samples will be the outputs of the distributed sampler. More
formally, for each element in the image of the ELF, we use the programmability properties of the
sampler to switch from D(1λ) to the trapdoored distribution D′(1λ). Notice that in the intermediate
hybrids, only a fraction of the support of the sampler will be distributed according to D′(1λ). Whenever
the adversary ends up picking one of these samples, we can recover the associated trapdoor by using
the PRF key K̂ hidden in the lossy-mode decryption program. We then use the retrieved trapdoor
to simulate the rest of Π′ using S and F. If instead the adversary chooses a sample from D(1λ), we
simply keep running Π′. Notice that we do not need to require the subexponential indistinguishability
between D(1λ) and D′(1λ)! Thanks to the ELF, we can transition from one distribution to the other
using a polynomial number of hybrids.

• In the last hybrid, corresponding to the ideal world, we switch the ELF in the lossy-mode decryp-
tion program back to injective mode. All of a sudden, the support of the sampler becomes again of
superpolynomial size, however, all the samples are still produced using D′(1λ) and, independently of
which one gets chosen by the adversary, all subsequent communication is simulated using S. Once
again, on the other hand, the distinguishing advantage between this hybrid and the previous one is an
inverse-polynomial quantity ε2(λ).

So, how can we prove that the ideal world is indistinguishable from Π′? Suppose it is not, i.e., the
distinguishing advantage is greater than some non-negligible function ε(λ). It is possible to choose the
parameters of the lossy-mode ELF so that ε1(λ)+ε2(λ) ≤ ε(λ)/2. We have just proven that the distinguishing
advantage between real world and ideal world is strictly smaller than ε(λ). This is a contradiction! For more
details on the construction of indistinguishability-preserving distributed samplers, we refer to Section 4.2.5
and Section 4.8.1.

On the relationship between our techniques and non-interactive MPC. The techniques we used
to build our lossy distributed sampler can be generalised to build a new version of one-round MPC that does
not need public-key infrastructures: suppose we want to evaluate a function F with n inputs (one for each
party). Start from a 2-round protocol for F with subexponential security against rushing semi-malicious
adversaries (for instance we can build it in the plain model using multi-key FHE [AJJM20]). Compress the
two rounds into one as we did in our lossy distributed sampler.

Clearly, we cannot prevent residual function attacks (see Section 1.1.3), however, we can guarantee that
if, for any (i, x1, x2), the residual functions

F (· · · x1︸︷︷︸
i

· · · ), F (· · · x2︸︷︷︸
i

· · · )

coincide, then the adversary cannot tell whether Pi’s input is x1 or x2.
As Yuval Ishai made me notice, this is some form of multiparty indistinguishability obfuscation. The

security properties of our NIMPC protocol seem extremely weak, almost useless, but the same could have been
said (wrongly) for indistinguishability obfuscation: why should we care about a primitive that guarantees
the indistinguishability between obfuscated programs only when they compute the same function? The
relationship between the two primitives becomes clearer if we consider a function FiO that on input a circuit
C and a value x, outputs C(x). That immediately gives an indistinguishability obfuscator.

1.2.7 Constant-Round Coin Tossing Extension with Large Stretch
We now focus on coin tossing extension (CTE). We recall that this is the study of protocols that implement
the functionality FUm (see Figure 1.1, Um denotes the uniform distribution over {0, 1}m(λ)) given access
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Ideal Functionality for Coin Tossing with Identifiable Abort FIA

On input Sample from all parties, compute w $← {0, 1}m(λ) and give it to the adversary. If the adversary
answers with OK, output w to all honest parties. Otherwise, wait for a non-empty subset S of corrupted
players and output (⊥, S) to all honest parties.

Figure 1.3: Ideal functionality for coin tossing with identifiable abort.

to a functionality FUk for some small polynomial function k(λ)28. We are interested in achieving security
against active adversaries corrupting an arbitrary number of participants. We often call the functionality
FUk the magic button: whenever the parties press the button, FUk spits out k(λ) uniformly random coins.
Throughout the section, we use r to denote the output of the protocol and of FUm , we use s to denote the
sample produced by the magic button. Recall that a result by Hofheinz et al. [HMU06] shows that coin
tossing extension protocols require k(λ) = ω(log λ).

In [ADIN24a], we presented several coin tossing extension constructions with ω(log λ) stretch and O(1)-
round complexity. All of them achieve only computational security. We describe them below.

Coin tossing extension from coin tossing with identifiable abort. The starting point of our first
construction is a coin tossing protocol with identifiable abort ΠIA. Formally, ΠIA implements the functionality
FIA in Figure 1.3. Notice that ΠIA is not a secure coin tossing because the adversary can adaptively choose
to abort after seeing the output of the protocol. For instance, it can ensure that the honest parties never
obtain an output where the first bit is 0. It is true that, when an abort occurs, the honest parties discover
the identity of at least one corrupted party, so they can kick that player out and restart the protocol with the
guarantee that, after restarting at most n− 1 times, they will obtain an output. However, that output will
not be uniformly random, our adversary can still sensibly bias the distribution, making the first bit much
more likely to be 1.

We solve this issue by “encrypting” the output of the protocol under the randomness produced by the
magic button. Specifically, in our CTE protocol, the parties will run ΠIA restarting and kicking out corrupted
players as we described above. Once ΠIA successfully terminates, providing all honest parties with a sample
w, the participants will call the magic button and output r ← w ⊕ PRG(s), where s is the string produced
by FUk . In other words, w can be viewed as an encryption of the final output r under the PRG seed s. The
adversary has still the ability to abort after seeing w, however, since at the moment of the decision s is still
secret, w leaks no information about the final output. To summarise, the adversary can force ΠIA to restart,
but in this way it will not bias any any way the output of the CTE protocol.

Finally, we observe that coin tossing protocols with identifiable abort can be easily build using O(1)-
rounds. So, if we rely on one of these constructions, we obtain an O(n)-round CTE protocol with arbitrarily
large polynomial stretch. Notably, in [GLOV12], Goyal et al. show that O(1)-round coin tossing with
identifiable abort and standalone security can be built from one-way functions. For more details, we refer to
Section 5.2.3 and Section 5.7.

Coin tossing extension in the hidden subgroup framework. The round complexity of the CTE
protocol we just described scales with the number of participants. We wonder: is there a truly O(1)-round
CTE protocol with large stretch? For instance, is there a 1-round solution?

If we want to build a 1-round CTE protocol with ω(log λ) stretch, we need to find a way to decrease the
influence of the adversary! Indeed, if we consider the entropy diagram of the protocol in the ideal world,
we notice that H(r|s) = ω(log λ). In other words, s does not contain enough entropy to determine the
output entirely on its own, we need to rely on the messages exchanged by the parties! Since the output is

28In [ADIN24a] and Chapter 5, we use a different notation: instead of k(λ), we use n(λ). The number of parties is instead
denoted by N .
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independent of anything the adversary tries to do, the ω(log λ) missing entropy should be taken care of by
just the honest messages.

Our idea is to rely on an algebraic framework inspired by another work of mine in collaboration with
Ivan Damgård, Claudio Orlandi and Peter Scholl [ADOS22]. We called it the hidden subgroup framework.
We work over a large, abelian, multiplicative group G containing a cyclic subgroup H of much smaller size.
Let h denote a generator for H. The subgroup H is hidden: we require that the uniform distributions over
G and over H are computationally indistinguishable.

Our protocol is really simple: each party Pi broadcasts a random element hi $← H along with a simulation-
extractable NIZK πi proving that hi belongs indeed to H. After this unique round of interaction, the parties
call the magic button and output r ←

∏
j∈[n] hj · hs, where s is the randomness produced by FUk . We

claim that r looks like a random element in G. The stretch is therefore positive: r contains log|G| bits of
pseudoentropy, whereas s just needs log|H| bits of entropy.

We elaborate on why r looks random in G. We observe that a simulator can embed a trapdoor in the
NIZK CRS. In this way, it can substitute the element hi broadcast by an honest party Pi with a uniformly
random element g $← G. The corresponding NIZK πi will be simulated using the trapdoor hidden in the CRS.
Observe that the adversary can use rushing against the honest parties, so it will see g before committing to
its choice of messages for the corrupted players. It will therefore try to bias the product g ·

∏
j 6=i hj . For

instance, it may make sure that its bit representation always starts with 1. Its influence is however limited:
since the adversary does not know the NIZK trapdoor, the elements broadcast by the corrupted parties all
belong to H. In other words, the adversary can only move the product within the coset gH! Whatever bias
it manages to create will be erased by the random correction term hs!

It is possible to prove that the protocol we just sketched is UC secure. That means that we can obtain
arbitrary large stretch without affecting the round complexity: we run multiple executions of the protocol
in parallel, we call the magic button only once and we use part of the produced randomness as a “virtual”
magic button output for the next parallel execution.
Remark. If we want to obtain a CTE protocol that produces uniformly random bits instead of a random
group element, we need to rely on an explainable conversion function Convert. In other words, Convert
should map the uniform distribution over G into a distribution over {0, 1}m(λ) that is indistinguishable from
random. Furthermore, given a random element r ∈ {0, 1}m(λ) we should be able to simulate a random g ∈ G
such that r = Convert(g). For some groups (e.g. class groups), it is unclear whether this conversion function
exists.

Instantiations of the hidden subgroup framework. We propose three instantiations of the framework,
the first one is based on DDH, the second one on the Paillier group, the third one on class groups.

• Decisional Diffie-Hellman. In our first instantiation, we rely on a cyclic group G′ of large prime order
p. We set G to the direct product G′ × G′. The subgroup H will instead be generated by a random
pair (g1, g2) ∈ G. Under DDH, a random element in H is indistinguishable from a random element in
G.

• Paillier group. In the second instantiation, the large group G will be Z∗N2 where N is the product of
two random, large safe-primes p and q29. The hidden subgroup H will consist of all 2N -th powers in
G. Given that p and q are safe primes, this subgroup is cyclic of order p′ · q′. Furthermore, a random
2N -th power in G looks like a uniformly distributed element under the QR and DCR assumptions.

• Class groups. A class group G′ can be rewritten as the direct product of a cyclic subgroup F of
known prime order q and another subgroup H ′ of unknown order. The subgroup H ′ is not necessarily
cyclic, however, it is possible to generate an element h ∈ H ′ such that fs · hr is computationally
indistinguishable from hr for s $← [q] and r

$← [`]. Here, ` is a public parameter of the class group
that guarantees that hr is statistically close to uniform in 〈h〉. The computational assumption we
just described is called the hidden subgroup membership assumption (HSM) [CL15]. To instantiate the
hidden subgroup framework, we will set H := 〈h〉 and G := F ×H.

29A safe prime is a prime number of the form p = 2p′ + 1 where p′ is also prime.
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Notice that for some instantiations of the framework (specifically, DDH and class groups), the CRS of the
CTE protocol becomes unstructured. In these cases, we can implement the setup using additional calls to
the magic button. Notice that the CRS of these CTE protocols is always reusable. For more information on
CTE from the hidden subgroup framework, we refer to Section 5.2.3 and Section 5.6.

One-round coin tossing extension without CRS. We wonder whether it is possible to build a one-
round CTE protocol without any CRS. This is tricky: what allowed us to reduce the influence of the adversary
in the construction we described above was indeed the NIZK trapdoor hidden in the CRS! If we remove all
setups, the only hope we have to restrict the influence of the adversary is the output of the magic button.
Without it, the adversary would have at least as much power as the simulator: what would happen, indeed,
if the adversary runs a copy of the simulator?

We solve our problems by relying on a sort of lossy trapdoor functions [PW08]. Suppose that there exists
a scheme that outputs elements over the group G of the hidden subgroup framework. Moreover, assume
that when the function is in lossy mode the image is contained in the hidden subgroup H. We can build
a one-round CTE protocol without any setup as follows: we let all parties broadcast a random element in
the domain of the trapdoor function scheme. Let xi be the message of party Pi. After this only round of
interaction, the parties call the magic button. Suppose that it provides the description of n lossy trapdoor
functions f1, . . . , fn, one for each player, along with a correction term s, similarly to the protocol we saw in
the previous paragraph. The output of our protocol will be

∏
j∈[n] fj(xj) · hs.

We can argue that the output of this protocol looks random in G: a simulator can generate all trapdoor
functions in lossy mode except for one, addressed to an honest party Pi. In this way, g := fi(xi) will be
uniformly distributed over G, whereas, for all j 6= i, fj(xj) will belong to H. Once again, the influence of
the adversary is restricted inside the coset gH. So, any bias that the adversary manages to introduce will
get erased by the random correction term hs!

Constructing lossy trapdoor functions. Unfortunately, we did not manage to build lossy trapdoor
functions with the property we desire in the hidden subgroup framework. We succeeded however using
lattice-based cryptography.

Our lossy trapdoor functions will be represented by a fat matrix over a ring Zq. Let M be the number
of columns. We split the matrix corresponding to the trapdoor function fj in two submatrices Aj and Bj :
Aj will consist of the first K rows, Bj will consist of the remaining V rows. The message xj broadcast by
party Pj in the CTE protocol will be a low-norm vector of dimension M produced by a discrete Gaussian
distribution. To compute fj(xj), we simply perform a matrix multiplication, i.e., fj(xj) = (y1

j , y
2
j ) where

y1
j = Aj · xj and y2

j = Bj · xj .
Two observations: (1) we choose the dimensions of Aj and Bj so that, when the latter are chosen at

random, fj(xj) will be statistically close to uniform by the leftover hash lemma [ILL89]; (2) it is possible
to sample fj along with a trapdoor T that allows to efficiently compute preimages [Ajt99, GPV08, MP12].
In other words, given any yj = (y1

j , y
2
j ), using T , we can derive a discrete Gaussian vector xj such that

fj(xj) = yj .
To generate fj in lossy mode, we simply sample Aj at random and we set Bᵀ

j ← Aᵀ
j · S + Ej where S

is a random K × V matrix over Zq and Ej is a low-norm M × V matrix sampled according to a discrete
Gaussian distribution. Observe that under LWE, Bj looks random, so the injective (or better surjective)
mode and the lossy mode look indistinguishable. Finally, we notice that, when fj is in lossy mode, we have

y2
j = Bj · xj ≈ (Sᵀ ·Aj) · xj = Sᵀ · y1

j .

To summarise, when fj is in surjective mode, fj(xj) is random over the vector space G := ZK+V
q . When

fj is instead in lossy mode fj(xj) is close in norm to the subspace H := {(y1, y2) ∈ ZK+V
q |y2 = Sᵀ · y1}.

Lattice-based coin tossing extension. If we use our lattice-based lossy trapdoor function in the
blueprint we described earlier, we almost obtain a one-round CTE protocol. We just need to make some
adjustments.
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First of all, we need to modify the output: instead of multiplying the outputs of the trapdoor functions,
we sum them, i.e.,

∑
j∈[n] fj(xj) + γ, where γ is a correction term uniformly distributed in H. Observe that

if we set all trapdoor functions of the corrupted parties in lossy mode using the same LWE secret S, the
influence of the adversary is restricted to be close to H (the sum of vectors close to H will still be close to H).
Therefore, any bias the adversary manages to introduce is almost entirely erased by the random correction
term γ. Almost! Because γ cannot take care of the noise that prevents the outputs of the lossy-mode
trapdoor functions from lying precisely in H. To deal with these small errors, we round down the last V
entries of the output to a smaller modulus p� q (we therefore need to rely on LWE with superpolynomial
modulus-to-noise ratio).

There is another issue we need to take care of: currently our protocol has negative stretch! Notice indeed
that the description of the trapdoor functions is larger than the output they produce. Furthermore, it is
unclear how to represent the correction term γ in a succinct way. Solving the first problem is easy: we notice
that the trapdoor functions are reusable. In other words, in the protocol, we let each party Pj broadcast L
discrete Gaussian vectors x1

j , . . . , x
L
j . We will produce L different outputs: the `-th one will be obtained by

rounding the last V entries of
∑
j∈[n] fj(x

`
j) + γj . Notice that the number of correction terms has grown to

L, however, for a sufficiently large L, the size of the output will now be greater than the description of the
trapdoor functions.

We compress the correction terms γ1, . . . , γL as follows: we let the magic button generate two matrices
C ∈ ZK×Wq and D ∈ ZV×Wq and L discrete Gaussian samples e1, . . . , eL ∈ ZWq (observe that discrete
Guassians are explainable distributions30 [AWY20]). We set γ` := (C · e`, D · e`). We choose W so that, if
C is random, we can apply the leftover hash lemma to argue that C · e` is statistically close to uniform over
ZKq . While in the real world execution of the protocol C and D will be uniformly random, in the simulation,
we set Dᵀ ← Cᵀ · S + E where E is a W × V discrete Gaussian matrix (under LWE with superpolynomial
modulus-to-noise ratio, D looks random). This ensures that

D · e` ≈ Sᵀ · C · e`.

In other words, γj will be close in norm to a random element in H. Notice that, by taking sufficiently large
V and L, we can ensure that the description of (C,D, e1, . . . , eL) is smaller than the amount of produced
randomness. With these modifications, the stretch becomes positive.

Final adjustments: better complexity in the number of parties. The CTE protocol we have built
so far can be proven secure in the UC model, so it can achieve arbitrarily large stretch. Furthermore, it
is easy to prove that the protocol is secure even against adaptive corruption due to its one-round nature
and the explainability of discrete Gaussian distributions [AWY20]: even if a party Pj gets corrupted after
having sent its message, we can still simulate the randomness that produced the discrete Gaussian vectors it
broadcast. There is only one annoying detail: the amount of randomness the magic button needs to produce
scales linearly on the number of parties!

We show how to make the complexity scale logarithmically in n by relying on the techniques used by
Gentry, Sahai and Waters in [GSW13] to build FHE. We recall that a GSW encryption of a bit b consists of
U ·R+ b ·G, where U is a fat matrix representing the public key, R is a random low-norm matrix and G is
called the gadget matrix. In particular, there exists an efficient deterministic algorithm that, on input any
matrix Y , produces a low-norm matrix G−1(Y ) such that G ·G−1(Y ) = Y .

In our CTE protocol, instead of letting the magic button generate f1, . . . , fn, we generate dlog ne + 1
matrices X1, . . . , Xdlogne, Y . We view the first dlog ne elements as GSW ciphertexts: for every j ∈ [n] we
derive fj by computing EvalGSW(δj , X1, . . . , Xdlogne)·G−1(Y ), where EvalGSW denotes the function evaluation
in the GSW FHE scheme and δj denotes the Kronecker delta function centred in j31.

In the ideal world execution, the simulator will generate X1, . . . , Xdlogne by encrypting the bit representa-
tion of the index of an honest party Pi under a public key U . In other words, fj will become U ·Rj+δj(i) ·Y ,
where Rj is a low-norm matrix. The public key U is not sampled at random: we split it into two parts

30In an explainable distribution, given a random sample, we can efficiently simulate the randomness that produced it.
31In other words, δj(i) = 1 if and only if j = i, otherwise, δj(i) = 0.
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U1, corresponding to the first K rows, and U2 corresponding to the last V rows. We set Uᵀ
2 ← Uᵀ

1 · S + E′

where E′ is low-norm matrix distributed according to a discrete Gaussian (under LWE with subexponential
modulus-to-noise ratio, U2 looks random). This ensures that, whenever j 6= i, fj is in lossy mode relative to
S:

Bj = U2 ·Rj ≈ Sᵀ · U1 ·Rj = Sᵀ ·Aj .

On the other hand, fi can be viewed as the sum of a lossy-mode function U · Ri and another function Y .
To simulate the protocol, it is sufficient to generate Y in surjective mode (along with a lattice trapdoor T ),
this will make fi surjective. For more details on one-round CTE from lattice-based cryptography, we refer
to Section 5.2.3 and Section 5.5.

A lower bound for statistical coin tossing extension with black-box simulation. All the CTE
constructions we presented so far achieve only security against computationally bounded adversaries. Since
[HMU06], we know that statistically secure CTE is impossible in the UC model but possible if we rely
on standalone security. Hofheinz et al. prove this by directly presenting a 1-round unconditionally secure
CTE protocol. The construction, however, has only O(log λ) stretch. We ask: is it possible to build O(1)-
round statistically secure protocols with larger stretch? We show that, if we restrict ourselves to black-box
simulation, the answer is no: an R-round statistically secure protocol with black-box simulation and a single
call to the magic button has at most O(R · log λ) stretch.

Our proof follows the blueprint of our distributed sampler impossibility in [AOS23] (see Section 1.2.4).
Dealing, however, with statistical security, we have a great advantage: conditional Shannon entropy is
preserved under statistical closeness (the entropies differ at most by a negligible amount). In other words,
the entropy diagrams in the real world and the ideal world will be essentially the same.

We start by proving that, in a CTE protocol in the dishonest majority setting (even a computationally
secure one), any round after the last call to the magic button is useless! If all parties stop immediately after
the last call and output the value they would return if everybody else suddenly halted, everybody would still
agree on the output and the protocol would still be secure. To prove this lemma, we simply generalise the
arguments of Cleve [Cle86] to n-party CTE protocols. Indeed, Cleve’s result is essentially saying that if a
bunch of parties manage to agree on a truly random m-bit string by purely interacting between each other
(so without any use of external resources such as the magic button), then they must have already agreed on
a truly random m-bit string before starting interacting.

Consider a statistically secure CTE protocol with R rounds. Without loss of generality, suppose that the
protocol ends with the call to the magic button. For every i ∈ [R], let U iH denote the list of messages sent
until the i-th round by the honest parties. Define U iC similarly using the messages of the corrupted players.
We analyse the entropy diagram of the construction considering the rushing adversary that simply follows
the protocol. We start from the ideal world. By applying the strong chain rule of Shannon’s entropy, we
obtain that

m(λ) = H(r) = H(r|URH , URC , s) + I(r; (URH , U
R
C , s))

= H(r|URH , URC , s) + I(r; s|URH , URC ) + I(r; (URH , U
R
C ))

= H(r|URH , URC , s) + I(r; s|URH , URC ) +

R∑
i=1

(
I(r;U iH |U i−1

H , U i−1
C ) + I(r;U iC |U iH , U i−1

C )
)
. (1.1)

It is easy to observe that

• since r is uniquely determined by URH , URC and s, we obtain H(r|URH , URC , s) = 0;

• since s is a k-bit string, we obtain I(r; s|URH , URC ) ≤ H(s) ≤ k(λ).

Continuing with our analysis, we notice that if the simulation is straightline (i.e. we are not allow to
rewind), for every i ∈ [R], U iC is independent of r and U iH conditioned on (U i−1

H , U i−1
C ). This is because r

is sampled independently of anything else by the functionality and the adversary generates the messages of
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the corrupted parties independently of the communication of the honest players in the same round. Written
using mutual information,

I(U iC ; (U iH , r)|U i−1
H , U i−1

C ) = 0.

If we allow the simulator to rewind, however, this is no longer true: the simulator can replay the i-th round
multiple times and choose an execution it likes, biasing the distribution of the transcript. Notice that if we
denote the number of times we rewind in the i-th round by Ti, we still have

I(U iC ; (U iH , r)|U i−1
H , U i−1

C , Ti) = 0.

Moreover,

I(U iC ; (U iH , r)|U i−1
H , U i−1

C ) = I(U iC ; (U iH , r);Ti|U i−1
H , U i−1

C ) + I(U iC ; (U iH , r)|U i−1
H , U i−1

C , Ti) ≤ H(Ti).

Therefore, if we rewind at most Q = poly(λ) times, we obtain I(U iC ; (U iH , r)|U
i−1
H , U i−1

C ) = O(log λ).
Switching the roles of honest and corrupted parties (our adversary behaves honestly), we obtain the

symmetric result I(U iH ; (U iC , r)|U
i−1
H , U i−1

C ) = O(log λ). We conclude with the following inequalities

I(r;U iC |U iH , U i−1
C ) ≤ I(U iC ; (U iH , r)|U i−1

H , U i−1
C ) = O(log λ),

I(r;U iH |U i−1
H , U i−1

C ) ≤ I(U iH ; (U iC , r)|U i−1
H , U i−1

C ) = O(log λ).

Putting everything together in (1.1), we obtain m(λ) ≤ k(λ) + R · O(log λ). For more details on the lower
bound, we refer to Section 5.2.4 and Section 5.8.
Remark. The lower bound holds even if we restrict the adversarial class to rushing, semi-malicious adversaries.
Moreover, the impossibility can be generalised to coin tossing extension with abort, and therefore, coin tossing
with abort (recall that we are considering statistical security with black-box simulation).

Unbiased sampling from any distribution. We have seen how the magic button functionality allows us
to sample uniformly random strings of arbitrary length in a single round without leaving any influence to the
adversary. Can we achieve the same if we want to produce samples from any generic distribution D(1λ)? We
show that, using strong primitives such as indistinguishability obfuscation and indistinguishability-preserving
distributed samplers, the answer is yes (but we need to rely on a small, reusable, unstructured CRS).

The idea is simple: we use the distributed sampler to compile the following zero-round protocol. The
CRS of the construction consists of an obfuscated program that receives as input a λ-bit string s. The
program feeds s in a puncturable PRF and uses the produced randomness to generate a sample from D(1λ).
This will be the output of its execution. In our zero-round protocol, the parties immediately call the magic
button and feed the produced string s into the obfuscated program, outputting the result.

It is trivial to see that the zero-round protocol implements the functionality FD (see Figure 1.1): the
simulator can just pick a random string s and program the obfuscated circuit to output the sample R when
it receives s as input (R is provided by the functionality). The modified program looks indistinguishable
from the original one even given s!

There is something weird however: why can we apply an indistinguishability-preserving distributed sam-
pler? Earlier we saw that this primitive requires the simulator of the original protocol to generate the CRS
without interacting with the functionality. Here, this property is not satisfied: the output of the functionality
is obfuscated inside the CRS!

Well, it turns out that, earlier, we told a little lie: indistinguishability-preserving distributed samplers
can be applied in a slightly more general setting. It is fine for the simulated CRS to depend on information
known only to the functionality as long as this information remains hidden: e.g., in the zero-round protocol,
even if we leak the ideal sample R, it is impossible to distinguish between an honestly generated CRS and
one that is programmed to output R at a random point s (as long as s is kept secret). Essentially, it is as
if the obfuscated program is an encryption of the output under s: the adversary is able to bias the result of
the distributed sampler, however, this bias is independent of the output of the sampling protocol. Indeed,
the output is encrypted under s and the adversary still does not know what the magic button is going to
produce! It is the same trick as in our first CTE construction! For more details, we refer to Section 5.2.5
and Section 5.9.
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Ideal Functionality FC

On input Sample from all parties, for every j ∈ [N ], compute (Rj1, . . . , R
j
n)

$← C(1λ). Then, for every
i ∈ [n], output (Rji )j∈[N ] to party Pi.

Figure 1.4: Ideal functionality for the correlation function C.

Ideal Functionality FRSample
C

On input Sample from all parties, for every j ∈ [N ], wait for (Rji )i∈C from the adversary, where C
denotes the set of corrupted parties. Compute (Rji )i∈H

$← RSample(1λ, (Rji )i∈C), where H denotes the
set of honest parties. Then, for every i ∈ H, output (Rji )j∈[N ] to party Pi.

Figure 1.5: Ideal functionality for the reverse-samplable correlation function C.

1.2.8 Sampling Correlated Randomness in One Round
We finally explain how distributed samplers can be used to generate large amounts of correlated randomness
in a single round and with sublinear communication in the size of the outputs. This is called a public-key
PCF. Their relation with distributed samplers was studied in [ASY22a].

Public-key PCFs for reverse-samplable correlation. Suppose that we want to generate N samples
from the correlation function C(1λ) which produces n correlated values R1, . . . , Rn, one for each party.
Ideally, we would like the public-key PCF to implement the functionality FC in Figure 1.4. Unfortunately,
if we do not want to give up on having sublinear communication in N , this is not possible: independently
of the number of rounds we use, the communication in the protocol is lower bounded by the entropy of the
outputs of the ideal functionality (which is linear in N).

This fact was already known since [BCG+19b]. In their paper, however, Boyle et al. proposed a new
way to generate randomness with sublinear communication: we work with reverse-samplable correlation
functions. These are correlation functions in which it is possible to efficiently simulate the outputs of the
honest parties from the outputs of the corrupted players using an algorithm RSample. Notice that not all
forms of correlation are reverse-samplable. For example, consider the two party correlation that outputs
(x, y) where y = f(x) for a one-way function f : we cannot simulate x given y!

As already shown in [BCG+19b], for any reverse-samplable correlation C, it is possible to design MPC
protocols that semi-honestly implement the functionality FRSample

C (see Figure 1.5) with sublinear communi-
cation in N . Now, we ask if we can do this using a single round of interaction.

We notice that this is fairly easy: we start from a public-key PCF that relies on a CRS. The latter consists
of an obfuscated program that takes as input a value x ∈ {0, 1}L and n public keys pk1, . . . , pkn, one for each
party. The program feeds the inputs in a puncturable PRF and uses part of the produced pseudorandomness
to sample n correlated elements R1, . . . , Rn from C(1λ). The rest of the output of the PRF is used to encrypt
each Ri under the public key pki. The program outputs the n ciphertexts. In the PCF protocol, the parties
simply generate PKE key pairs and broadcast the public counterpart. By feeding the public keys in the
obfuscated program along with any x ∈ {0, 1}L, the parties can obtain correlated randomness without any
interaction: party Pi just needs to decrypt the i-th ciphertext output by the obfuscated program using its
secret key. Notice that we produce up to 2L tuples of correlated material, one for each value of x.

To remove the CRS, we just use a distributed sampler. Notice that, despite we started from a one-round
protocol with CRS, the compiled protocol still requires one round. This is because the communication in the
original protocol was independent of the CRS: the parties can broadcast their public keys together with their
distributed sampler message. It is possible to prove that, under the security of iO, public-key encryption

41



and distributed samplers, the protocol implements FRSample
C against semi-honest adversaries, with poly(λ, L)

communication.
To upgrade the construction to active security, we have two solutions. If the public-key PCF we just

described is secure against non-rushing semi-malicious adversaries (this is the case, for instance, if we used
a distributed sampler that is secure against non-rushing semi-malicious adversaries), then, we can rely on
the anti-rusher compiler (this would however require a programmable random oracle). The alternative is
to rely on an indistinguishability-preserving distributed sampler to generate the obfuscated program in the
public-key PCF construction32. Notice that indistinguishability-preserving distributed samplers are always
compatible with FRSample

C given that there is no communication from the functionality to the simulator. For
more details, we refer to Section 2.6.

Ideal public-key PCFs. We observe that if we rely on a programmable random oracle, it is possible to
get around the impossibility of [BCG+19b]: we design a public-key PCF that implements the functionality
FC in Figure 1.4 with sublinear communication in N .

The idea is very simple: we use a distributed sampler to generate an adaptive universal sampler [HJK+16]
(adaptive universal samplers can be built only in the programmable random oracle model). Simultaneously,
the parties broadcast their public keys as they did in the public-key PCFs for reverse-samplable correlation.
To generate large amounts of correlated randomness, the parties just pick an x ∈ {0, 1}L and run the universal
sampler on input the distribution that samples from C(1λ), encrypts the produced correlated values under
the public keys of the corresponding parties and outputs the n ciphertexts along with x. In this way, we can
generate up to 2L different samples.

Interestingly, in this protocol, the messages sent by the parties are independent of the correlation function
C. This leaves the possibility to the protocol participants to sample from multiple correlation functions
adaptively chosen after the only round of interaction. We call this an ideal public-key PCF. For more details,
we refer to Section 2.7.
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Chapter 2

Distributed (Correlation) Samplers:
How to Remove a Trusted Dealer in
One Round
Damiano Abram, Peter Scholl, Sophia Yakoubov

Abstract. Structured random strings (SRSs) and correlated randomness are important for
many cryptographic protocols. In settings where interaction is expensive, it is desirable to obtain
such randomness in as few rounds of communication as possible; ideally, simply by exchanging
one reusable round of messages which can be considered public keys.

In this paper, we describe how to generate any SRS or correlated randomness in such a
single round of communication, using, among other things, indistinguishability obfuscation. We
introduce what we call a distributed sampler, which enables n parties to sample a single public
value (SRS) from any distribution. We construct a semi-malicious distributed sampler in the
plain model, and use it to build a semi-malicious public-key PCF (Boyle et al., FOCS 2020)
in the plain model. A public-key PCF can be thought of as a distributed correlation sampler;
instead of producing a public SRS, it gives each party a private random value (where the values
satisfy some correlation).

We introduce a general technique called an anti-rusher which compiles any one-round protocol
with semi-malicious security without inputs to a similar one-round protocol with active security
by making use of a programmable random oracle. This gets us actively secure distributed samplers
and public-key PCFs in the random oracle model.

Finally, we explore some tradeoffs. Our first PCF construction is limited to reverse-sampleable
correlations (where the random outputs of honest parties must be simulatable given the random
outputs of corrupt parties); we additionally show a different construction without this limitation,
but which does not allow parties to hold secret parameters of the correlation. We also describe
how to avoid the use of a random oracle at the cost of relying on sub-exponentially secure
indistinguishability obfuscation.

2.1 Introduction
Randomness is crucial for many cryptographic protocols. Participants can generate some randomness locally
(e.g. by flipping coins), but the generation of other forms of randomness is more involved. For instance,
a uniform reference string (URS) must be produced in such a way that a coalition of corrupt protocol
participants — controlled by the adversary — cannot bias it too much. Even more complex is the generation
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of a structured reference string (SRS, such as an RSA modulus), which can depend on secrets that should
not be known to anyone. For instance, constructions such as cryptographic accumulators [Bd94] use an
RSA modulus whose factorization is known to nobody, while many succinct zero-knowledge proofs such as
SNARKs [BCCT12] require a more complex form of SRS.

In contrast to common reference strings, which are public, some protocols demand correlated randomness,
where each participant holds a secret random value, but because the values must satisfy some relationship,
they cannot be generated locally by the participants. An example of correlated randomness is random
oblivious transfer, where one participant has a list of random strings, and another has one of those strings
as well as its index in the list. Such correlated randomness often allows cryptographic protocols to run with
a more efficient online phase.

Typically, in order to set up an SRS or correlated randomness without making additional trust as-
sumptions, the parties must run a secure multi-party computation protocol, which takes several rounds of
interaction. This is the case, for instance, in “setup ceremonies” [BGG19, BGM17] that have been designed
to generate trusted SNARK parameters for applications. In this paper, we explore techniques that let parties
sample any common reference string or correlation in just one round of interaction.

2.1.1 Related Work
There are a number of lines of work that can be used to generate randomness in different ways.

Universal samplers. A universal sampler [HJK+16] is a kind of SRS which can be used to obliviously
sample from any distribution that has an efficient sampling algorithm. That is, after a one-time trusted
setup to generate the universal sampler, it can be used to generate arbitrary other SRSs. Hofheinz et al.
[HJK+16] show how to build universal samplers from indistinguishability obfuscation and a random oracle,
while allowing an unbounded number of adaptive queries. They also show how to build weaker forms of
universal sampler in the standard model, from single-key functional encryption [LZ17]. A universal sampler
is a very powerful tool, but in many cases impractical, due to the need for a trusted setup.

Non-interactive multiparty computation (NIMPC). Non-interactive multiparty computation
(NIMPC, [BGI+14a]) is a kind of one-round protocol that allows n parties to compute any function of
their secret inputs in just one round of communication. However, NIMPC requires that the parties know
one another’s public keys before that one round, so there is another implicit round of communication.1
NIMPC for general functions can be constructed based on subexponentially-secure indistinguishability ob-
fuscation [HIJ+17].

Spooky encryption. Spooky encryption [DHRW16] is a kind of encryption which enables parties to learn
joint functions of ciphertexts encrypted under independent public keys (given one of the corresponding secret
keys). In order for semantic security to hold, what party i learns using her secret key should reveal nothing
about the value encrypted to party j’s public key; so, spooky encryption only supports the evaluation of
non-signaling functions. An example of a non-signaling function is any function where the parties’ outputs
are an additive secret sharing. Dodis et al. [DHRW16] show how to build spooky encryption for any such
additive function from the LWE assumption with a URS (this also implies multi-party homomorphic secret
sharing for general functions). In the two-party setting, they also show how to build spooky encryption for a
larger class of non-signaling functions from (among other things) sub-exponentially hard indistinguishability
obfuscation.

Pseudorandom Correlation Generators and Functions (PCGs and PCFs). Pseudorandom correla-
tion generators [BCG+19a, BCG+19b, BCG+20b] and functions [BCG+20a, OSY21] let parties take a small

1This requirement is inherent; otherwise, an adversary would be able to take the message an honest party sent, and recompute
the function with that party’s input while varying the other inputs. NIMPC does allow similar recomputation attacks, but only
with all honest party inputs fixed, which a PKI can be used to enforce.
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Primitive Distribution Output
Distributed Sampler (DS, Definition 2.3.1) fixed public
Reusable Distributed Universal Sampler (Definition 2.7.6) any public
Public-key PCF (pk-PCF, [OSY21]) fixed, reverse-samplable private
Ideal pk-PCF (Definition 2.7.2) any private

Figure 2.1: In this table we describe one-round n-party primitives that can be used for sampling randomness.
They differ in terms of whether a given execution enables sampling from any distribution (or just a fixed
one), and in terms of whether they only output public randomness (in the form of a URS or SRS) or also
return private correlated randomness to the parties.

amount of specially correlated randomness (called the seed randomness) and expand it non-interactively,
obtaining a large sample from a target correlation. Pseudorandom correlation generators (PCGs) support
only a fixed, polynomial expansion; pseudorandom correlation functions (PCFs) allow the parties to produce
exponentially many instances of the correlation (via evaluation of the function on any of exponentially many
inputs).

PCGs and PCFs can be built for any additively secret shared correlation (where the parties obtain additive
shares of a sample from some distribution) using LWE-based spooky encryption mentioned above. Similarly,
with two parties, we can build PCGs and PCFs for more general reverse-samplable correlations by relying
on spooky encryption from subexponentially secure iO. PCGs and PCFs with better concrete efficiency can
be obtained under different flavours of the LPN assumption, for simpler correlations such as vector oblivious
linear evaluation [BCGI18], oblivious transfer [BCG+19b] and others [BCG+20b, BCG+20a].

Of course, in order to use PCGs or PCFs, the parties must somehow get the correlated seed randomness.
Public-key PCGs and PCFs allow the parties to instead derive outputs using their independently generated
public keys, which can be published in a single round of communication. The above, spooky encryption-based
PCGs and PCFs are public-key, while the LPN-based ones are not. Public-key PCFs for OT and vector-OLE
were recently built based on DCR and QR [OSY21]; however, these require a structured reference string
consisting of a public RSA modulus with hidden factorization.

2.1.2 Our Contributions
In this paper, we leverage indistinguishability obfuscation to build public-key PCFs for any correlation. On
the way to realizing this, we define several other primitives, described in Figure 2.1. One of these primitives
is a distributed sampler, which is a weaker form of public-key PCF which only allows the sampling of public
randomness. (A public-key PCF can be thought of as a distributed correlation sampler.) Our constructions,
and the assumptions they use, are mapped out in Figure 2.2. We pay particular attention to avoiding the
use of sub-exponentially secure primitives where possible (which rules out strong tools such as probabilistic
iO [CLTV15]).

We begin by exploring constructions secure against semi-malicious adversaries, where corrupt parties
are assumed to follow the protocol other than in their choice of random coins. We build a semi-malicious
distributed sampler, and use it to build a semi-malicious public-key PCF. We then compile those protocols
to be secure against active adversaries. This leads to a public-key PCF that requires a random oracle, and
supports the broad class of reverse-sampleable correlations (where, given only corrupt parties’ values in a
given sample, honest parties’ values can be simulated in such a way that they are indistinguishable from the
ones in the original sample).

We also show two other routes to public-key PCFs with active security. One of these avoids the use
of a random oracle, but requires sub-exponentially secure building blocks. The other requires a random
oracle, but can support general correlations, not just reverse-sampleable ones. (The downside is that it does
not support correlations with master secrets, which allow parties to have secret input parameters to the
correlation.)

These are valuable trade-offs, as described below.

On the importance of realizing general correlations: There are many valuable correlation that are
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Theorem 2.5.2

DS
Theorem 2.4.1

pk-PCF
with SRS

Theorem 2.6.7

pk-PCF
Theorem 2.6.8

DS
with RO

Theorem 2.5.3

pk-PCF
with RO

Theorem 2.6.9

pk-PCF
with URS

Theorem 2.6.10

Reusable
DUS

with RO
Theorem 2.7.7

US
with

RO, SRS

Ideal
pk-PCF
with RO

Theorem 2.7.8

Figure 2.2: In this table we describe the constructions in this paper. In pink are assumptions: they
include somewhere statistically binding hash functions (SSB), multiparty homomorphic encryption with pri-
vate evaluation (pMHE [AJJM20], a weaker form of multi-key FHE), indistinguishability obfuscation (iO),
non-interactive zero knowledge proofs (NIZK), and universal samplers (US). In blue are constructions of
distributed samplers (DS, Definition 2.3.1), reusable distributed universal samplers (reusable DUS, Defi-
nition 2.7.6) and public-key pseudorandom correlation functions (pk-PCFs, [OSY21]). Constructions with
bold outlines are secure against active adversaries; the rest are secure against semi-malicious adversaries. In
magenta are necessary setup assumptions. (Note that the availability of a random oracle (RO) immediately
implies the additional availability of a URS.) Dashed lines denote the use of sub-exponentially secure tools.

not reverse-sampleable. An example of such a correlation gives a garbled circuit to one party, and
all the wire labels to another. Since the labels cannot be reverse-sampled from the circuit (without
violating the security properties of the garbling scheme), such a correlation is not reverse-sampleable;
however, it is a valuable form of pre-processing for secure two-party computation.

On the importance of avoiding a random oracle: Random oracles are an idealized assumption with
no known realization; there is a large gap between a random oracle and a hash function, which is often
substituted for a random oracle in practice.

On the importance of avoiding sub-exponential assumptions: It may seem strange to want to
avoid sub-exponentially secure primitives,2 when many candidates for indistinguishability obfuscation
itself are based on subexponential assumptions [JLS21]. However, despite informal arguments [LZ17],
this is not known to be inherent: earlier iO candidates are based on polynomial hardness [GGH+13]
(albeit for an exponential family of assumptions), and in future we may obtain iO from a single,
polynomial hardness assumption. In general, it is always preferable to require a weaker form of secu-
rity from a primitive, and this also leads to better parameters in practice. The problem of removing
sub-exponential assumptions from iO, or applications of iO, has been studied previously in various
settings [GPSZ17, LZ17].

2.1.3 Technical Overview
Distributed Samplers

We start by introducing a new tool called a distributed sampler (DS, Section 2.3). A distributed sampler
allows n parties to sample a single, public output from an efficiently sampleable distribution D with just one

2By sub-exponential security, we mean that no PPT adversary cannot break the security of that primitive with probability
better than 2−λ

c for a constant c.
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round of communication (which is modelled by the exchange of public keys).

Semi-malicious distributed samplers. We use multiparty homomorphic encryption with private evalu-
ation (pMHE [AJJM20], a weaker, setup-free version of multi-key FHE) and indistinguishability obfuscation
to build semi-malicious distributed samplers in the plain model (Section 2.4). In our distributed sampler
construction, all parties can compute an encryption of the sample from everyones’ public keys (using, among
other things, the homomorphic properties of the encryption scheme), and then use an obfuscated program
in party i’s public key to get party i’s partial decryption of the sample. The partial decryptions can then
be combined to recover the sample itself. The tricky thing is that, in the proof, we must ensure that we
can replace the real sample with an ideal sample. To do this, we must remove all information about the
real sample from the public keys. However, pMHE secret keys are not puncturable; that is, there is no
way to ensure that they do not reveal any information about the contents of one ciphertext, while correctly
decrypting all others. We could, in different hybrids, hardcode the correct partial decryption for each of
the exponentially many possible ciphertexts, but this would blow up the size of the obfuscated program.
Therefore, instead of directly including a pMHE ciphertext in each party’s DS public key, we have each
party obfuscate an additional program which produces a new pMHE ciphertext each time it is used. This
way, when we need to remove all information about a given sample, we can remove the entire corresponding
secret key (via the appropriate use of puncturable PRFs and hardcoded values). This technique may be
useful for other primitives, such as NIMPC [BGI+14a] and probabilistic iO [CLTV15], to avoid the use of
an exponential number of hybrids.

Achieving active security with a random oracle. Upgrading to active security is challenging because
we need to protect against two types of attacks: malformed messages, and rushing adversaries, who wait
for honest parties’ messages before sending their own. We protect against the former using non-interactive
zero knowledge proofs. (This requires a URS which, though it is a form of setup, is much weaker than an
SRS.) We protect against the latter via a generic transformation that we call an anti-rusher (Section 2.5.1).
To use our anti-rusher, each party includes in her public key an obfuscated program which takes as input a
hash (i.e. a random oracle output) of all parties’ public keys. It then samples new (DS) public keys, using
this hash as a PRF nonce. This ensures that even an adversary who selects her public keys after seeing the
honest party public keys cannot influence the selected sample other than by re-sampling polynomially many
times.

Public-key PCFs

We start by building a public-key PCF that requires an SRS (Section 2.6.3). The SRS consists of an
obfuscated program that, given a nonce and n parties’ public encryption keys, uses a PRF to generate
correlated randomness, and encrypts each party’s random output to its public key. We can then eliminate
the need for a pre-distributed SRS by instead using a distributed sampler to sample it (Section 2.6.4).

Public-key PCFs without random oracles. The proofs of security for the constructions sketched above
only require polynomially many hybrids, roughly speaking because the random oracle allows the simulator
to predict and control the inputs to the obfuscated programs. We can avoid the use of the random oracle,
at the cost of going through exponentially many hybrids in the proof of security, and thus requiring sub-
exponentially secure primitives.

Public-key PCFs for any correlation with a random oracle. Boyle et al. [BCG+19b] prove that a
public-key PCF in the plain model that can handle any correlation (not just reverse-sampleable ones) must
have keys at least as large as all the correlated randomness it yields. We observe that we can use a random
oracle to sidestep this lower bound by deriving additional randomness from the oracle.

As a stepping stone, we introduce a different flavour of the distributed sampler, which we call the reusable
distributed universal sampler (reusable DUS). It is reusable because it can be queried multiple times (without
the need for additional communication), and it is universal because each query can produce a sample from
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a different distribution (specified by the querier). We build a reusable distributed universal sampler from a
universal sampler, a random oracle and a distributed sampler (by using the distributed sampler to produce
the universal sampler). Our last public-key PCF (Section 2.7) then uses the reusable distributed universal
sampler to sample from a distribution that first picks the correlated randomness and then encrypts each
party’s share under her public key.

2.2 Preliminaries
Notation. We denote the security parameter by λ and the set {1, 2, . . . ,m} by [m]. Our constructions are
designed for an ordered group of n parties P1, P2, . . . , Pn. We will denote the set of (indexes of) corrupted
parties by C, whereas its complementary, the set of honest players, is H.

We indicate the probability of an event E by P[E]. We use the term noticeable to refer to a non-negligible
quantity. A probability p is instead overwhelming if 1−p is negligible. We say that a cryptographic primitive
is sub-exponentially secure, if the advantage of the adversary is bounded by 2−λ

c for some constant c > 0.
When the advantage is negligible, we say that it is polynomially secure.

We use the simple arrow ← to assign the output of a deterministic algorithm Alg(x) or a specific value a
to a variable y, i.e. y ← Alg(x) or y ← a. If Alg is instead probabilistic, we write y $← Alg(x) and we assume
that the random tape is sampled uniformly. If the latter is set to a particular value r, we write however
y ← Alg(x; r). We use $← also if we sample the value of y uniformly over a set X, i.e. y $← X. Finally, we
refer to algorithms having no input as distributions. The latter are in most cases parametrised by λ. The
terms circuit and program are used interchangeably.

2.2.1 Indistinguishability Obfuscation
We recall the formal definition of indistinguishability obfuscation (iO) [BGI+01, GGH+13]. Informally
speaking an obfuscator is an efficient algorithm that “scrambles” any given circuit Cr until it is impossible to
extract any information about Cr except its original input-output behaviour. Furthermore, the result of the
operation is another program computing exactly the same function as Cr. We provide a formal definition.
Definition 2.2.1 (Indistinguishability Obfuscator). Let (Lλ)λ∈N be a class of circuits such that every Cr ∈ Lλ
maps a inp(λ)-bit input into a out(λ)-bit output.

An indistinguishability obfuscator for (Lλ)λ∈N is a PPT algorithm iO with the following properties.

• Correctness. For every λ ∈ N, circuit Cr ∈ Lλ and input x ∈ {0, 1}inp(λ)

P
[
Cr′(x) = Cr(x) | Cr′ $← iO(1λ,Cr)

]
= 1

• Security. For every pair of circuits Cr0,Cr1 ∈ Lλ such that Cr0(x) = Cr1(x) for each x ∈ {0, 1}inp(λ),
the distributions given by iO(1λ,Cr0) and iO(1λ,Cr1) are computationally indistinguishable.

Observe that the obfuscator is tailored to a specific class of circuits. The latter often affects the size of
the obfuscated programs, increasing it as the class becomes larger.

The first candidate indistinguishability obfuscator was presented in 2013 by Garg et al. [GGH+13]. The
construction relies on subexponentially secure primitives. Subsequent work has more and more weakened
the requirements under which it is possible to build obfuscation. However, all known constructions still rely
on sub-exponentially secure primitives or exponentially-many assumptions. Indistinguishability obfuscators
not suffering from these problems are still purpose of research.

2.2.2 Puncturable PRFs
We recall the formal definition of puncturable PRF [KPTZ13, BW13, BGI14b]. A punturable PRF is a PRF
construction F in which the keys K have an additional property: we can puncture them in any position x,
obtaining a possibly longer key containing no information about FK(x) but still allowing computing FK(y)
for every y 6= x.
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Definition 2.2.2 (Puncturable PRF). A puncturable PRF with output space (Xλ)λ∈N is a pair of PPT
algorithms (F,Punct) with the following properties.

• Correctness. For every λ ∈ N, key K ∈ {0, 1}λ and values x, y ∈ {0, 1}∗ with x 6= y

P
[
FK(y) = FK̂(y) | K̂ ← Punct(K,x)

]
= 1

• Security. For every value x ∈ {0, 1}λ, the following two distributions are indistinguishable.(K̂, r)

∣∣∣∣∣∣∣
K

$← {0, 1}λ

K̂ ← Punct(K,x)

r ← FK(x)


(K̂, r)

∣∣∣∣∣∣∣∣
K

$← {0, 1}λ

K̂ ← Punct(K,x)

r
$← Xλ


As noticed in [BW13], it easy to build puncturable PRFs by relying on the GGM construction [GGM86].

2.2.3 Simulation-Extractable NIZKs
We recall the formal definition of simulation-extractable NIZK [GO07]. Let R be an efficiently computable
relation consisting of pairs (x,w), where x is called statement and w witness. As widely known, a NIZK
for R is a construction that allows a party to prove the knowledge of a witness w for a statement x with
only one message and without revealing any information about w itself (zero-knowledge). The procedure
relies on a CRS, which, depending on the construction, can be structured or unstructured. Zero-knowledge is
formulated by requiring the existence of two PPT simulators: the first one generates a fake CRS embedding a
trapdoor τ into it, the second one leverages the knowledge of τ to produce valid proofs for various statements
without needing the corresponding witnesses.

A simulation-extractable NIZK has also an additional property: there exists a PPT algorithm that, in
conjunction with the two simulators, is able to extract the witness from any valid proof generated by the
adversary. Such algorithm is called extractor and exploits the knowledge of the trapdoor in the CRS. We
now formalise the syntax and the security properties of what we have just described.
Definition 2.2.3 (Non-Interactive Proof). A non-interactive proof for a relation R is a triple of PPT algo-
rithms (Gen,Prove,Verify) with the following syntax.

• Gen takes as input the security parameter 1λ and outputs a CRS.

• Prove takes as input the security parameter 1λ, the CRS, a statement x and a witness w. The output
is a proof π for x.

• Verify takes as input a CRS, a proof π and a statement x. The output is a bit indicating whether the
proof has been accepted or not.

Definition 2.2.4 (Simulation-Extractable NIZK). A non-interactive proof (Gen,Prove,Verify) for the relation
R is a simulation extractable NIZK if it satisfies the following properties.

• Completeness. For every (x,w) ∈ R,

P

[
Verify(crs, π, x) = 1

∣∣∣∣∣ crs
$← Gen(1λ)

π
$← Prove(1λ, crs, x, w)

]
= 1

• Multi-Theorem Zero Knowledge. There exist PPT simulators Sim1 and Sim2 such that, for
every set of pairs {(xi, wi)}i∈[m] in R, no PPT adversary is able to distinguish between the following
distributions. {(

crs, (xi, πi)i∈[m]

)∣∣∣∣∣ crs
$← Gen(1λ)

∀i ∈ [m] : πi
$← Prove(1λ, crs, xi, wi)

}
{(

crs, (xi, πi)i∈[m]

)∣∣∣∣∣ (crs, τ)
$← Sim1(1λ)

∀i ∈ [m] : πi
$← Sim2(crs, τ, xi)

}
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• Simulation-Extractability. There exists a PPT extractor Extract such that, for every set of state-
ments {xi}i∈[m] and PPT adversary A, we have that

P


∀i ∈ [m] : (π′, x′) 6= (πi, xi)

Verify(crs, π′, x′) = 1

(x′, w′) 6∈ R

∣∣∣∣∣∣∣∣∣∣
(crs, τ)

$← Sim1(1λ)

∀i ∈ [m] : πi
$← Sim2(crs, τ, xi)

(x′, π′)
$← A

(
1λ, crs, (xi, πi)i∈[m]

)
w′ ← Extract(crs, τ, x′, π′)

 = negl(λ)

Observe that simulation-extractability and zero-knowledge imply soundness.
NIZKs can be classified based on the type of CRS. When the latter is a uniform string of bits, we talk

about NIZK with URS (uniform reference string). When the CRS is instead structured and possibly depends
on secrets that must not be revealed to the parties, we talk about NIZKs with SRS (structured reference
string).

2.2.4 MHE with Private Evaluation
We recall the definition of MHE with private evaluation [AJJM20]. This is a construction that permits
any party Pi to encrypt a value xi obtaining a ciphertext ci and the corresponding partial decryption key
ski. Once given the ciphertexts of the other parties, Pi can apply a circuit Cr on (cj)j∈[n], obtaining the
i-th partial decryption di by means of pki. By pooling the partial plaintexts (dj)j∈[n], it is then possible to
obtain Cr(x1, . . . , xn) without learning any additional information on the inputs. The construction differs
from multi-key FHE as there actually exists no public key but only a private one that changes from ciphertext
to ciphertext. Furthermore, the encryption algorithm needs to be provided with the parameters (input size,
output size and depth) of the circuits we are going to apply on the ciphertexts. The final decryption needs
instead to know the exact circuit that was used to produce the partial plaintext it is provided with. It is
possible to build MHE schemes with private evaluation from polynomially secure LWE [AJJM20].
Definition 2.2.5 (Multiparty Homomorphic Encryption with Private Evaluation). Amultiparty homomorphic
encryption scheme with private evaluation (pMHE) is a triple of PPT algorithms (Enc,PrivEval,FinDec) with
the following syntax.

• Enc is a randomised algorithm that takes as input the security parameter 1λ, the parameters of a
circuit (input size, output size and depth), an index i and a message xi. The output is a ciphertext ci
and a partial decryption key ski.

• PrivEval is a randomised algorithm. It takes as input a partial decryption key ski, the description of
a circuit Cr mapping n inputs into a single output and n ciphertexts c1, c2, . . . , cn. The output is a
partial plaintext di.

• FinDec is a deterministic algorithm taking as input a circuit Cr and the corresponding n partial de-
cryptions d1, d2, . . . , dn. The output is a plaintext d.

Definition 2.2.6 (Reusable Semi-Malicious Security). We say that a pMHE scheme satisfies reusable semi-
malicious security if it satisfies the following properties.

• Correctness. For every security parameter λ ∈ N, circuit Cr mapping n inputs into one output and
inputs x1, x2, . . . , xn, we have

P

d = res

∣∣∣∣∣∣∣∣∣∣
∀i ∈ [n] : (ci, ski)

$← Enc(1λ,Cr.params, i, xi)

∀i ∈ [n] : di
$← Eval(ski,Cr, c1, c2, . . . , cn)

d← FinDec(Cr, d1, d2, . . . , dn)

res← Cr(x1, x2, . . . , xn)

 = 1
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GC,Cr,(xh)h∈H
pMHE (λ)

Initialisation.
1. b $← {0, 1}

2. ∀h ∈ H : (c0h, sk
0
h)

$← Enc(1λ,Cr.params, h, xh)

3.
(
τ, (c1h)h∈H

)
$← Sim1(1λ, H,Cr.params)

4. Activate the adversary with input
(
1λ, (cbh)h∈H

)
.

5. Receive the inputs (xi)i∈C and the randomness (ri)i∈C of the corrupted parties from the adversary.
6. ∀i ∈ C : (c0i , sk

0
i )← Enc(1λ,Cr.params, i, xi; ri)

Decryption Queries. On input (Decrypt,Cr′) where Cr′.params = Cr.params.
1. ∀h ∈ H : d0

h
$← PrivEval(skh,Cr

′, c01, c
0
2, . . . , c

0
n)

2.
(
τ, (d1

h)h∈H
)

$← Sim2

(
τ,Cr′,Cr′(x1, x2, . . . , xn), (xi, ri)i∈C

)
3. Reply with (dbh)h∈H .

Output. The adversary wins if the final output is b.

Figure 2.3: The pMHE Security Game

• Reusable Semi-Malicious Security. There exist PPT simulators Sim1 and Sim2 such that, for every
n ∈ N, set of corrupted parties C, circuit Cr, inputs of the honest parties (xh)h∈H , no PPT adversary
is able to win the game GC,Cr,(xh)h∈H

pMHE (λ) (see Figure 2.3) with noticeable advantage.

Observe that correctness states that if we evaluate a circuit Cr over encrypted values x1, x2, . . . , xn and
we pool the partial decryptions, we obtain C(x1, x2, . . . , xn). Security instead declares that if we publish the
encryption of a value xi and we later on disclose the partial plaintext corresponding to a certain circuit Cr,
we reveal nothing more than the output of Cr.

2.2.5 Somewhere Statistically Binding Hash Functions
We recall the formal definition of somewhere statistically binding hashing (SSB) [HW15], which can be
regarded as a more powerful, obfuscation-friendly version of hash functions. The notion was first introduced
by Hubáček and Wichs in [HW15] and can be constructed from FHE [HW15].

The primitive is composed of two algorithms Gen and Hash. The first one is used to generate a key hiding
a special index i. The second one instead produces a digest after receiving the key and a message as inputs.
The interesting property of SSB hashing is that there exists no pair of messages with different i-th block but
same digest. We provide now formal definitions.
Definition 2.2.7 (Somewhere Statistically Binding Hash Function). A somewhere statistically binding hash
function (SSB) with block alphabet Σ is a pair of PPT algorithms (Gen,Hash) with the following syntax.

• Gen is a randomised procedure taking as input the security parameter 1λ, the maximum number of
blocks B and an index l ∈ [B]. The output is a hash key hk.

• Hash is a deterministic procedure taking as input a hash key hk and a message x ∈ ΣB where B is the
maximum number of blocks supported by hk. The output is a digest y.

Definition 2.2.8 (Security of SSB Hashing). A somewhere statistically binding hash function is secure if it
satisfies the following properties.

• Index Hiding. For every B ∈ N and i, j ∈ [B], no PPT adversary can distinguish between
Gen(1λ, B, i) and Gen(1λ, B, j).
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• Somewhere Statistically Binding. For every B ∈ N and i ∈ [B],

P

 ∃x, x′ ∈ ΣB

xi 6= x′i

Hash(hk, x) = Hash(hk, x′)

∣∣∣∣∣∣∣hk $← Gen(1λ, B, i)

 = negl(λ).

Observe that the SSB property, in conjunction with index hiding, implies the collision resistance of the
hash function.

The definition described above is actually weaker than the original one. In [HW15], an SSB hash function
featured two additional algorithms Prove and Verify. The first one was used to generate short openings of
the j-th preimage block of a digest, for any j ∈ [B]. The second one was used to verify them. These two
algorithms are not used in this work.

2.2.6 Universal Samplers
We recall the definitions of universal sampler (US) [HJK+16], describing the syntax and the various security
notions. Informally speaking, a US is a trusted-dealer-based construction that permits to deterministically
derive samples from any distribution, learning no information about the corresponding randomness. This
primitive is fundamental for the construction of our distributed universal samplers (see Section 2.7.1 and
Section 2.7.1).
Definition 2.2.9 (Universal Sampler). Let `(λ), r(λ) and t(λ) be polynomials. A universal sampler for
(`, r, t)-distributions is a pair of PPT algorithms (Setup,Sample) with the following syntax.

1. Setup is a randomised algorithm taking as input the security parameter 1λ and outputting a sampler
U .

2. Sample is a deterministic procedure possibly interacting with a random oracle H. It takes as input a
sampler U and the description D of an (`, r, t)-distribution, outputting a sample R.

Observe that in the above definition, we ask that Setup does not interact with any random oracle. If
that was not the case, it would be impossible to generate a universal sampler inside an obfuscated program.
The original definition of US [HJK+16] was not as restrictive. However, all the constructions presented in
[HJK+16] satisfy the property described above, including those on which we rely in this work.

One-time universal samplers. We now formalise the weaker security notion of the primitive. In partic-
ular, we require that the samples look random only for one specific distribution selected ahead of time. In
[HJK+16], the authors present a construction satisfying this definition without random oracle.
Definition 2.2.10 (One-Time Universal Sampler). A universal sampler (Setup,Sample) for (`, r, t)-
distributions satisfies one-time security if there exists a PPT simulator Sim such that, for every (`, r, t)-
distribution D, the following two distributions are computationally indistinguishable{

U,R

∣∣∣∣∣ U $← Setup(1λ)

R← Sample(U,D)

} {
U,R

∣∣∣∣∣ R
$← D

U
$← Sim(1λ,D, R)

}

Notice that security states that one-time USs can be programmed to output ideal samples from the
distribution D, without the adversary noticing it.

Adaptively secure universal samplers. We present the stronger security notion of universal samplers.
We now ask that the samples look random for every distribution adaptively chosen by the adversary. In
particular, we do not care only about one distribution, but multiple ones. This definition can only be satisfied
in the random oracle model. Hofheinz et al. presented an example of such construction in [HJK+16].
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GUS(λ)

Initialisation. The challenger samples a random bit b $← {0, 1} and computes U0
$← Setup(1λ). Then,

it instantiates a random oracle H and a sampling oracle O. Upon receiving an (`, r, t)-distribution D,
the latter replies with D(F (D)) where F is a truly random function outputting r(λ) bits. Finally, the
challenger computes (τ, U1)

$← SimGenO(1λ) and provides the adversary with Ub.
Oracle query. Upon receiving any query (RO, x) from the adversary, the challenger computes r0 ←
H(x) and (τ, r1)

$← SimROO(1λ, x, τ). It replies with rb.
Sample. Upon receiving any query (Sample,D), the challenger computes R0 ← SampleH(U0,D) and
R1 ← O(D). Then, it replies with Rb.
Output. The adversary wins if its output is equal to b.

Figure 2.4: The Universal Sampler Game

Definition 2.2.11 (Adaptively Secure Universal Sampler). A universal sampler (Setup,Sample) for (`, r, t)-
distributions satisfies adaptive security if there exist PPT simulators SimGen and SimRO such that no PPT
adversary can win the game GUS(λ) (see Figure 2.4) with noticeable advantage.

As for the one-time case, security states that the sampler U and the random oracle H could be pro-
grammed to output ideal samples, without the adversary noticing it. The only difference is that now the
adversary can adaptively choose the distribution multiple times.

2.3 Defining Distributed Samplers
Informally speaking, a distributed sampler (DS) for the distribution D is a construction that allows n parties
to obtain a random sample R from D with just one round of communication and without revealing any
additional information about the randomness used for the generation of R. The output of the procedure can
be derived given only the public transcript, so we do not aim to protect the privacy of the result against
passive adversaries eavesdropping the communications between the parties.

If we assume an arbitrary trusted setup, building a DS becomes straightforward; we can consider the
trivial setup that directly provides the parties with a random sample from D. Obtaining solutions with a
weaker (or no) trusted setup is much more challenging.

The structure and syntax of distributed samplers is formalised as follows. We then analyse different
flavours of security definitions.
Definition 2.3.1 (n-party Distributed Sampler for the Distribution D). An n-party distributed sampler for
the distribution D is a pair of PPT algorithms (Gen,Sample) with the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1λ and a party index i ∈ [n]
and outputting a sampler share Ui for party i. Let {0, 1}L(λ) be the space from which the randomness
of the algorithm is sampled.

2. Sample is a deterministic algorithm taking as input n shares of the sampler U1, U2, . . . , Un and out-
putting a sample R.

In some of our security definitions, we will refer to the one-round protocol ΠDS that is induced by the
distributed sampler DS = (Gen,Sample). This is the natural protocol obtained from DS, where each party
first broadcasts a message output by Gen, and then runs Sample on input all the parties’ messages.

2.3.1 Security
In this section we formalise the definition of distributed samplers with relation to different security flavours,
namely, semi-malicious and active. We always assume that we deal with a static adversary who can corrupt
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FD
Initialisation. On input Init from every honest party and the adversary, the functionality activates
and sets Q := ∅. (Q will be used to keep track of queries.) If all the parties are honest, the functionality
outputs R $← D(1λ) to every honest party and sends R to the adversary, then it halts.
Query. On input Query from the adversary, the functionality samples R $← D(1λ) and creates a fresh
label id. It sends (id, R) to the adversary and adds the pair to Q.
Output. On input (Output, îd) from the adversary, the functionality retrieves the only pair (id, R) ∈ Q
with id = îd. If such pair does not exist, the functionality does nothing. Otherwise, it outputs R to
every honest party and terminates.
Abort. On input Abort from the adversary, the functionality outputs ⊥ to every honest party and
terminates.

Figure 2.5: Distributed Sampler Functionality

up to n − 1 out of the n parties. We recall that a protocol has semi-malicious security if it remains secure
even if the corrupt parties behave semi-honestly, but the adversary can select their random tapes.
Definition 2.3.2 (Distributed Sampler with Semi-Malicious Security). A distributed sampler (Gen,Sample)
has semi-malicious security if there exists a PPT simulator Sim such that, for every set of corrupt par-
ties C ( [n] and corresponding randomness (ρi)i∈C , the following two distributions are computationally
indistinguishable:

 (Ui)i∈[n]

(ρi)i∈C , R

∣∣∣∣∣∣∣
ρi

$← {0, 1}L(λ) ∀i ∈ H
Ui ← Gen(1λ, i; ρi) ∀i ∈ [n]

R← Sample(U1, U2, . . . , Un)

 and

{
(Ui)i∈[n]

(ρi)i∈C , R

∣∣∣∣∣ R
$← D(1λ)

(Ui)i∈H
$← Sim

(
1λ, C,R, (ρi)i∈C

)}

Observe that this definition implies that, even in the simulation, the relation

R = Sample(U1, U2, . . . , Un)

holds with overwhelming probability. In other words, security requires that (Gen,Sample) securely imple-
ments the functionality that samples from D and outputs the result to all of the parties.

Observe that the previous definition can be adapted to passive security by simply sampling the random-
ness of the corrupted parties inside the game in the real world and generating it using the simulator in the
ideal world.

We now define actively secure distributed samplers. Here, to handle the challenges introduced by a
rushing adversary, we model security by defining an ideal functionality in the universal composability (UC)
framework [Can01], and require that the protocol ΠDS securely implements this functionality.
Definition 2.3.3 (Distributed Sampler with Active Security). Let DS = (Gen,Sample) be a distributed sampler
for the distribution D. We say that DS has active security if the one-round protocol ΠDS securely implements
the functionality FD (see Figure 2.5) against a static and active adversary corrupting up to n− 1 parties.
Remark 2.3.4 (Distributed Samplers with a CRS or Random Oracle). Our constructions with active security
rely on a setup assumption in the form of a common reference string (CRS) and random oracle. For a CRS,
we assume the algorithms Gen,Sample are implicitly given the CRS as input, which is modelled as being
sampled by an ideal setup functionality. As usual, the random oracle is modelled as an external oracle that
may be queried by any algorithm or party, and programmed by the simulator in the security proof.
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Observe that this definition allows the adversary to request several samples R from the functionality, and
then select the one it likes the most. Our definition must allow this in order to deal with a rushing adversary
who might wait for the messages (Ui)i∈H of all the honest parties and then locally re-generate the corrupt
parties’ messages (Ui)i∈C , obtaining a wide range of possible outputs. Finally, it can broadcast the corrupt
parties’ messages that lead to the output it likes the most. This makes distributed samplers with active
security rather useless when the distribution D has low entropy, i.e. when there exists a polynomial-size set
S such that D(1λ) ∈ S with overwhelming probability. Indeed, in such cases, the adversary is able to select
its favourite element in the image of D.

On the usefulness of distributed samplers with a CRS. Our distributed samplers with active security
require a CRS for NIZK proofs. Since one of the main goals of the construction is avoid trusted setup in
multiparty protocols, assuming the existence of a CRS, which itself is some form of setup, may seem wrong.

We highlight, however, that some types of CRS are much easier to generate than others. A CRS that
depends on values which must remain secret (e.g. an RSA modulus with unknown factorization, or an
obfuscated program which contains a secret key) is difficult to generate. However, assuming the security of
trapdoor permutations [FLS90], bilinear maps [GOS06], learning with errors [PS19] or indistinguishability
obfuscation [BP15], we can construct NIZK proofs where the CRS is just a random string of bits, i.e. a
URS. In the random oracle model, such a CRS can even be generated without any interaction. So, the CRS
required by our constructions is the simplest, weakest kind of CRS setup.

2.4 A Construction with Semi-Malicious Security
We now present the main construction of this paper: a distributed sampler with semi-malicious security based
on polynomially secure MHE with private evaluation and indistinguishability obfuscation. In Section 2.5,
we explain how to upgrade this construction to achieve active security.

The basic idea. Our goal is to generate a random sample R from the distribution D. The natural way
to do it is to produce a random bit string s and feed it into D. We want to perform the operation in an
encrypted way as we need to preserve the privacy of s. A DS implements the functionality that provides
samples from the underlying distribution, but not the randomness used to obtain them, so no information
about s can be leaked.

We guarantee that any adversary corrupting up to n − 1 parties is not able to influence the choice of
s by XORing n bit strings of the same length, the i-th one of which is independently sampled by the i-th
party Pi. Observe that we are dealing with a semi-malicious adversary, so we do not need to worry about
corrupted parties adaptively choosing their shares after seeing those of the honest players.

Preserving the privacy of the random string. To preserve the privacy of s, we rely on an MHE
scheme with private evaluation pMHE = (Enc,PrivEval,FinDec). Each party Pi encrypts si, publishing the
corresponding ciphertext ci and keeping the private key ski secret. As long as the honest players do not
reveal their partial decryption keys, the privacy of the random string s is preserved. Using the homomorphic
properties of the MHE scheme, the parties are also able to obtain partial plaintexts of R without any
interactions. However, we run into an issue: in order to finalise the decryption, the construction would
require an additional round of communication where the partial plaintexts are broadcast.

Reverting to a one-round construction. We need to find a way to perform the final decryption without
additional interaction, while at the same time preserving the privacy of the random string s. That means
revealing a very limited amount of information about the private keys sk1, sk2, . . . , skn, so that it is only
possible to retrieve R, revealing nothing more.

Inspired by [HIJ+17], we build such a precise tool by relying on indistinguishability obfuscation: in
the only round of interaction, each party Pi additionally publishes an obfuscated evaluation program EPi
containing the private key ski. When given the ciphertexts of the other parties, EPi evaluates the circuit
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producing the final result R and outputs the partial decryption with relation to ski. Using the evaluation
programs, the players are thus able to retrieve R by feeding the partial plaintexts into pMHE.FinDec.

Dealing with the leakage about the secret keys. At first glance, the solution outlined in the previous
paragraph seems to be secure. However, there are some sneaky issues we need to deal with.

In this warm-up construction, we aim to protect the privacy of the random string s by means of the
reusable semi-malicious security of the MHE scheme with private evaluation. To rely on this assumption,
no information on the secret keys must be leaked. However, this is not the case here, as the private keys are
part of the evaluation programs.

In the security proof, we are therefore forced to proceed in two steps: first, we must remove the secret
keys from the programs using obfuscation, and then we can apply reusable semi-malicious security. The
first task is actually trickier than it may seem. iO states we cannot distinguish between the obfuscation
of two equivalent programs. Finding a program with the same input-output behaviour as EPi without it
containing any information about ski is actually impossible, as any output of the program depends on the
private key. We cannot even hard-code the partial decryptions under ski for all possible inputs into the
obfuscated program as that would require storing an exponential amount of information, blowing up the size
of EPi.

In [HIJ+17], while constructing an NI-MPC protocol based on multi-key FHE and iO, the authors deal
with an analogous issue by progressively changing the behaviour of the program input by input, first hard-
coding the output corresponding to a specific input and then using the simulatability of partial decryptions
to remove any dependency on the multi-key FHE secret key. Unfortunately, in our context, this approach
raises additional problems. First of all, in contrast with some multi-key FHE definitions, MHE does not
support simulatability of partial decryptions. Additionally, since the procedure of [HIJ+17] is applied input
by input, the security proof would require exponentially many hybrids. In that case, security can be argued
only if transitions between subsequent hybrids cause a subexponentially small increase in the adversary’s
advantage. In other words, we would need to rely on subexponentially secure primitives even if future
research shows that iO does not. Finally, we would still allow the adversary to compute several outputs
without changing the random strings (sh)h∈H selected by the honest parties. Each of the obtained values
leaks some additional information about the final output of the distributed sampler. In [HIJ+17], this fact
did not constitute an issue as this type of leakage is intrinsically connected to the notion of NI-MPC.

Bounding the leakage: key generation programs. To avoid the problems described above, we in-
troduce the idea of key generation programs. Each party Pi publishes an obfuscated program KGPi which
encrypts a freshly chosen string si, keeping the corresponding partial decryption key secret.

The randomness used by KGPi is produced via a puncturable PRF F taking as a nonce the key generation
programs of the other parties. In this way, any slight change in the programs of the other parties leads to
a completely unrelated string si, ciphertext ci and key ski. It is therefore possible to protect the privacy
of si using a polynomial number of hybrids, as we need only worry about a single combination of inputs.
Specifically, we can remove any information about ski from EPi and hard-code the partial plaintext di
corresponding to (cj)j∈[n]. At that point, we can rely on the reusable semi-malicious security of the MHE
scheme with private evaluation, removing any information about si from ci and di and programming the
final output to be a random sample R from D.

The introduction of the key generation programs requires minimal modifications to the evaluation pro-
grams. In order to retrieve the MHE private key, EPi needs to know the same PRF key Ki used by KGPi.
Moreover, it now takes as input the key generation programs of the other parties, from which it will derive
the MHE ciphertexts needed for the computation of R. Observe that EPi will also contain KGPi, which will
be fed into the other key generation programs in a nested execution of obfuscated circuits.

Compressing the inputs. The only problem with the construction above, is that we now have a circularity
issue: we cannot actually feed one key generation program as input to another key generation program, since
the programs are of the same size. This holds even if we relied on obfuscation for Turing machines, since
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to prove security, we would need to puncture the PRF keys in the nonces, i.e. the key generation programs
of the other parties. The point at which the i-th key is punctured, which is at least as big as the program
itself, must be hard-coded into KGPi, which is clearly too small.

Instead of feeding entire key generation programs into KGPi, we can input their hash, which is much
smaller. This of course means that there now exist different combinations of key generation programs leading
to the same MHE ciphertext-key pair (ci, ski), and the adversary could try to extract information about ski
by looking for collisions. The security of the hash function should, however, prevent this attack. The only
issue is that iO does not really get along with this kind of argument based on collision-resistant hashing. We
instead rely on the more iO-friendly notion of a somewhere statistically binding hash function Hash = (Gen,
Hash) [HW15].

Final construction. We now present the formal description of our semi-maliciously secure DS. The al-
gorithms Gen and Sample, as well as the unobfuscated key generation program PKG and evaluation program
PEval, can be found in Figure 2.6. In the description, we assume that the puncturable PRF F outputs
pseudorandom strings (r1, r2, r3) where each of r1, r2 and r3 is as long as the randomness needed by D,
pMHE.Enc, and HE.PrivEval respectively. Moreover, we denote by B the maximum number of blocks in the
messages fed into Hash.Hash.
Theorem 2.4.1. If Hash = (Gen,Hash) is a somewhere statistically binding hash function, pMHE = (Enc,
PrivEval,FinDec) is a MHE scheme with private evaluation, iO is an indistinguishability obfuscator and
(F,Punct) is a puncturable PRF, the construction in Figure 2.6 is an n-party distributed sampler with
semi-malicious security for the distribution D.

Proof. We prove the security of the construction in Figure 2.6 in a sequence of hybrids. In the initial hybrid
(hybrid 0), we start with the real game; in the last hybrid (hybrid 6), we produce a simulated sampler share
on behalf of one of the honest parties, which leads the parties to output an R sampled at random from D.
We choose one honest party h, and throughout hybrids 1− 6, we modify only how the sampler share Uh is
produced. The rest of the honest parties continue to produce their sampler shares as per the Gen protocol
in Figure 2.6.

Because the simulator has access to all parties’ random tapes, it of course knows all their secrets. In the
following, we refer to Ui = (hki,KGPi,EPi) as the sampler share produced by party i for i 6= h. We also
refer to the secret keys Ki contained in those programs (also known to the simulator). For whatever values
Uh = (hkh,KGPh,EPh) the simulator produces on behalf of party h in a given hybrid, we let ŝi denote the
share of the randomness generated by KGPi (on the appropriate nonce y), and (ĉi, ŝki) denote the encryption
of that randomness and the corresponding partial decryption key produced by KGPi. Finally, we let r̂i2
denote the random string input in pMHE.Enc by KGPi for the generation of ĉi.

Hybrid 0: This is the initial hybrid, where the simulator, on behalf of every honest party i, generates
a sampler share Ui as per the Gen algorithm in Figure 2.6.

Hybrid 1: In this hybrid, the simulator, on behalf of honest party h, punctures the key Kh at the
relevant point (the hash of (hkj ,KGPj)j 6=h produced by the other parties j), but programs the appropriate
output at that point into the programs. By the correctness of F puncturing, the input-output behaviour of
both programs is the same as it was in the previous hybrid. Therefore, by the security of iO, this hybrid is
indistinguishable from the previous one.

More specifically, let (hkj ,KGPj)j 6=h be the hash key and obfuscated key generation program of every
other party. (The simulator knows these — even for corrupt parties — since she gets to see the randomness
tape of corrupt parties in the definition of semi-malicious security.) The simulator does the following during
Gen on behalf of party h, where the text in red indicates what changed since the previous hybrid:

1. Kh
$← {0, 1}λ

2. hkh
$← Hash.Gen(1λ, B, 0)

3. ŷh ← Hash.Hash
(
hkh, (hkj ,KGPj)j 6=h

)
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Distributed Sampler with Semi-Malicious Security

Gen(1λ, i) :

1. K $← {0, 1}λ

2. hk
$← Hash.Gen(1λ, B, 0)

3. KGP
$← iO

(
1λ,PKG[K, i]

)
4. EP

$← iO
(
1λ,PEval[K, i, hk,KGP]

)
5. Output U := (hk,KGP,EP).

Sample
((
Ui = (hki,KGPi,EPi)

)
i∈[n]

)
:

1. ∀i ∈ [n] : di ← EPi
(
(hkj ,KGPj)j 6=i

)
2. Output R← pMHE.FinDec

(
D̃, (di)i∈[n]

)
The algorithm D̃.
Given a set of n random strings s1, s2, . . . , sn, perform the following operations.

1. s← s1 ⊕ s2 ⊕ · · · ⊕ sn

2. Output R← D(1λ; s)

PKG[K, i]: the key generation program

Hard-coded. The private key K and the index i of the party.
Input. A hash y.

1. (r1, r2, r3)← FK(y)

2. s← r1

3. (c, sk)← pMHE.Enc(1λ, D̃.params, i, s; r2)

4. Output c.

PEval[K, i, hki,KGPi]: the evaluation program

Hard-coded. The private key K, the index i of the party, the hash key hki, and the obfuscated key
generation program KGPi.
Input. A set of n− 1 pairs (hkj ,KGPj)j 6=i where the first element is a hash key and the second is an
obfuscated key generation program.

1. ∀j ∈ [n] : yj ← Hash.Hash
(
hkj , (hkl,KGPl)l 6=j

)
2. ∀j 6= i : cj ← KGPj(yj)

3. (r1, r2, r3)← FK(yi)

4. si ← r1

5. (ci, ski)← pMHE.Enc(1λ, D̃.params, i, si; r2)

6. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)

7. Output di.

Figure 2.6: A Distributed Sampler with Semi-Malicious Security
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P1
KG[K, i, ŷ, ĉ]

Hard-coded. The private key K, the index i of the party, as well as a nonce ŷ, and a ciphertext ĉ.
Input. A nonce y.

1. If y = ŷ, output ĉ.

2. Otherwise, continue executing PKG[K]:

3. (r1, r2, r3)← FK(y)

4. s← r1

5. (c, sk)← pMHE.Enc(1λ, D̃.params, i, s; r2)

6. Output c.

Figure 2.7: The Key Generation Program

4. K̂h ← Punct(Kh, ŷh)

5. (ŝh, r̂2, r̂3)← FKh(ŷh)

6. (ĉh, ŝkh)← pMHE.Enc(1λ, D̃.params, h, ŝh; r̂2)

7. KGPh
$← iO

(
1λ,P1

KG[K̂h, h, ŷh, ĉh]
)
(see Figure 2.7)

8. EPh
$← iO

(
1λ,P1

Eval[K̂h, h, hkh,KGPh, ŷh, ĉh, ŝkh, r̂3]
)
(see Figure 2.8)

9. Output Uh := (hkh,KGPh,EPh).

Next, for every l from 0 to the length of the input to Hash.Hash, we proceed first to Hybrid 2.l.1, then
to Hybrid 2.l.2.

Hybrid 2.l.1: In this hybrid, the simulator, on behalf of honest party h, makes the hash key hkh
statistically binding at index l (whereas before it was statistically binding at index l − 1). This hybrid is
indistinguishable from the previous one by the index hiding property of Hash.

Hybrid 2.l.2: In this hybrid, the simulator, on behalf of honest party h, changes the evaluation program
EPh to only use the hardcoded key and ciphertext if the first l blocks of the input coincide with a hardcoded
reference input. (The simulated party h now obfuscates P2

Eval (Figure 2.9) instead of P1
Eval (Figure 2.8).)

By the fact that Hash.Hash is statistically binding at l, the input-output behaviour of both programs is the
same as it was in the previous hybrid. Therefore, by the security of iO, this hybrid is indistinguishable from
the previous one.

More specifically, the simulator does the following during Gen on behalf of party h, where the text in red
indicates what changed since the previous hybrid:

1. Kh
$← {0, 1}λ

2. hkh
$← Hash.Gen(1λ, B, l)

3. ŷh ← Hash.Hash
(
hkh, (hkj ,KGPj)j 6=h

)
4. K̂h ← Punct(Kh, ŷh)

5. (ŝh, r̂2, r̂3)← FKh(ŷh)

6. (ĉh, ŝkh)← pMHE.Enc(1λ, D̃.params, h, ŝh; r̂2)
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P1
Eval[K, i, hki,KGPi, ŷ, ĉ, ŝk, r̂]

Hard-coded. The private key K, the index i of the party, the hash key hki, the obfuscated key
generation program KGPi, as well as a nonce ŷ, a ciphertext ĉ, a secret key ŝk, and randomness r̂.
Input. A set of n− 1 pairs (hkj ,KGPj)j 6=i where the first element is a hash key and the second is an
obfuscated key generation program.

1. ∀j ∈ [n] : yj ← Hash.Hash
(
hkj , (hkl,KGPl)l 6=j

)
2. ∀j 6= i : cj ← KGPj(yj)

3. If yi = ŷ, set ski ← ŝk, ci ← ĉ and r3 ← r̂.

4. Otherwise,

(a) (r1, r2, r3)← FK(yi)

(b) si ← r1

(c) (ci, ski)← pMHE.Enc(1λ, D̃.params, i, si; r2)

5. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)

6. Output di.

Figure 2.8: The Evaluation Program

7. KGPh
$← iO

(
1λ,P1

KG[K̂h, h, ŷh, ĉh]
)
(see Figure 2.7)

8. ŵ ← (hkj ,KGPj)j 6=h

9. EPh
$← iO

(
1λ,P2

Eval[K̂h, h, hkh,KGPh, ŷh, ĉh, ŝkh, r̂3, ŵ]
)
(see Figure 2.9)

10. Output Uh := (hkh,KGPh,EPh).

Hybrid 3: At this point, EPh only uses the hardcoded key and ciphertext if the entire input matches
the hardcoded reference input. Since that is the case, EPh will only ever use the hardcoded decryption key
on one ciphertext; so, we can remove the hardcoded decryption key entirely, and instead hardcode a partial
decryption value. In this hybrid, the simulator, on behalf of party h, replaces P2

Eval (Figure 2.9) with P3
Eval

(Figure 2.10) which does exactly this. This hybrid is indistinguishable from the previous one by the security
of iO.

More specifically, the simulator does the following during Gen on behalf of party h, where the text in red
indicates what changed since the previous hybrid:

1. Kh
$← {0, 1}λ

2. hkh
$← Hash.Gen(1λ, B,B)

3. ŷh ← Hash.Hash
(
hkh, (hkj ,KGPj)j 6=h

)
4. K̂h ← Punct(Kh, ŷh)

5. (ŝh, r̂2, r̂3)← FKh(ŷh)

6. (ĉh, ŝkh)← pMHE.Enc(1λ, D̃.params, h, ŝh; r̂2)

7. KGPh
$← iO

(
1λ,P1

KG[K̂h, h, ŷh, ĉh]
)
(see Figure 2.7)
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P2
Eval[K, i, hki,KGPi, ŷ, p̂k, ĉ, ŝk, r̂, ŵ]

Hard-coded. The private key K, the index i of the party, the hash key hki, the obfuscated key
generation program KGPi, as well as a nonce ŷ, a ciphertext ĉ, a secret key ŝk, randomness r̂, and a
hardcoded input ŵ.
Input. A set of n− 1 pairs (hkj ,KGPj)j 6=i where the first element is a hash key and the second is an
obfuscated key generation program.

1. ∀j ∈ [n] : yj ← Hash.Hash
(
hkj , (hkl,KGPl)l 6=j

)
2. ∀j 6= i : cj ← KGPj(yj)

3. If yi = ŷ and the first l blocks of ŵ and (hkj ,KGPj)j 6=h coincide, set ski ← ŝk, ci ← ĉ and
r3 ← r̂.

4. Otherwise,

(a) (r1, r2, r3)← FK(yi)

(b) si ← r1

(c) (ci, ski)← pMHE.Enc(1λ, D̃.params, i, si; r2)

5. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)

6. Output di.

Figure 2.9: The Evaluation Program

8. d̂h ← pMHE.PrivEval(ŝkh, D̃, ĉ1, ĉ2, . . . , ĉn; r̂3)

9. ŵ ← (hkj ,KGPj)j 6=h

10. EPh
$← iO

(
1λ,P3

Eval[K̂h, h, hkh,KGPh, ŵ, d̂h]
)
(see Figure 2.10)

11. Output Uh := (hkh,KGPh,EPh).

Hybrid 4. In this hybrid, the simulator computes the final output R directly as R ← D(1λ; s) where
s = ŝ1 ⊕ ŝ2 ⊕ · · · ⊕ ŝn. (The simulator of course has all these values, as it has access to all parties’ random
tapes.) This hybrid is indistinguishable from the previous one by the correctness of obfuscation and MHE
with private evaluation.

Hybrid 5. In this hybrid, the simulator, on behalf of party h, replaces the hardcoded output of F at ŷh
with a truly random one. This hybrid is indistinguishable from the previous one by the security of F .

More specifically, the simulator does the following during Gen on behalf of party h, where the text in red
indicates what changed since the previous hybrid:

1. Kh
$← {0, 1}λ

2. hkh
$← Hash.Gen(1λ, B,B)

3. ŷh ← Hash.Hash
(
hkh, (hkj ,KGPj)j 6=h

)
4. K̂h ← Punct(Kh, ŷh)

5. Sample (ŝh, r̂2, r̂3) at random from the appropriate space

6. (ĉh, ŝkh)← pMHE.Enc(1λ, D̃.params, h, ŝh; r̂2)
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P3
Eval[K, i, hki,KGPi, ŵ, d̂]

Hard-coded. The private key K, the index i of the party, the hash key hki, the obfuscated key
generation program KGPi, as well as a hardcoded input ŵ and a partial decryption d̂.
Input. A set of n− 1 pairs (hkj ,KGPj)j 6=i where the first element is a hash key and the second is an
obfuscated key generation program.

1. If (hkj ,KGPj)j 6=i = ŵ, output d̂.

2. Otherwise, ∀j ∈ [n] : yj ← Hash.Hash
(
hkj , (hkl,KGPl)l 6=j

)
3. ∀j 6= i : cj ← KGPj(yj)

4. (r1, r2, r3)← FK(yi)

5. si ← r1

6. (ci, ski)← pMHE.Enc(1λ, D̃.params, i, si; r2)

7. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)

8. Output di.

Figure 2.10: The Evaluation Program

7. KGPh
$← iO

(
1λ,P1

KG[K̂h, h, ŷh, ĉh]
)
(see Figure 2.7)

8. d̂h ← pMHE.PrivEval(ŝkh, D̃, ĉ1, ĉ2, . . . , ĉn; r̂3)

9. ŵ ← (hkj ,KGPj)j 6=h

10. EPh
$← iO

(
1λ,P3

Eval[K̂h, h, hkh,KGPh, ŵ, d̂h]
)
(see Figure 2.10)

11. Output Uh := (hkh,KGPh,EPh).

Hybrid 6. In this hybrid, the simulator replaces the real ciphertext ĉh and partial decryption d̂h with
simulated ones. The production of this simulated values does not require party h’s secret decryption key
nor the plaintext ŝh; it forces the final decryption to output the value R. Since the view of the adversary
contains now no information about ŝh, the simulator can sample R at random from D. This hybrid is
indistinguishable from the previous one by the reusable semi-malicious security of the MHE scheme with
private evaluation.

More specifically, the simulator does the following during Gen on behalf of party h, where the text in red
indicates what changed since the previous hybrid:

1. Kh
$← {0, 1}λ

2. hkh
$← Hash.Gen(1λ, B,B)

3. ŷh ← Hash.Hash
(
hkh, (hkj ,KGPj)j 6=h

)
4. K̂h ← Punct(Kh, ŷh)

5. (τ, ĉh)
$← pMHE.Sim1(1λ, {h}, D̃.params)

6. KGPh
$← iO

(
1λ,P1

KG[K̂h, h, ŷh, ĉh]
)
(see Figure 2.7)
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7. R $← D(1λ)

8. Retrieve the values (ŝj)j 6=h and the randomness (r̂j2)j 6=h used by the other parties for the generation
of (ĉj)j 6=h

9. (τ, d̂h)
$← pMHE.Sim2

(
τ, D̃, R, (ŝj , r̂j2)j 6=h

)
10. ŵ ← (hkj ,KGPj)j 6=h

11. EPh
$← iO

(
1λ,P3

Eval[K̂h, h, hkh,KGPh, ŵ, d̂h]
)
(see Figure 2.10)

12. Output Uh := (hkh,KGPh,EPh).

Since this hybrid gives us exactly the distribution we want our original Hybrid 0 to be indistinguishable
from, this completes the proof.

Observe that a distributed sampler with semi-malicious security also has passive security.

2.5 Upgrading to Active Security
When moving from semi-malicious to active security, there are two main issues we need to tackle: corrupt
parties publishing malformed shares of the sampler, and rushing adversaries. The former can be easily dealt
with by adding NIZK proofs of well-formedness to the sampler shares (for this reason, our solution relies on
a URS). Rushing adversaries are a more challenging problem, and to deal with this, we rely on a random
oracle.

The problem of rushing. In the semi-maliciously secure construction described in Section 2.4, the ran-
domness used to generate an honest party’s MHE ciphertexts and private keys is output by a PRF, which
takes as input a nonce that depends on the key generation programs of all parties (including the corrupt
ones). To prove security, we need to puncture the PRF key at that nonce, erasing any correlation between
the MHE ciphertext and the PRF key. This can be done in the semi-malicious case, as the simulator knows
the programs of the corrupted parties before it must produce those of the honest parties. In the actively
secure case, we run into an issue. The adversary is able to adaptively choose the programs of the corrupted
parties after seeing those of the other players, in what is called rushing behaviour. In the security proof,
we would therefore need to puncture a PRF key without knowing the actual position where puncturing is
needed.

Although the issue we described above is very specific, dealing with rushing behaviour is a general
problem. In a secure distributed sampler, we can program the shares of the honest parties to output an ideal
sample when used in conjunction with the shares of the corrupted players. Since the latter are unknown
upon generation of the honest players’ shares, the immediate approach would be to program the outputs for
every possible choice of the adversary. We run however into an incompressibility problem as we would need
to store exponentially many ideal outputs in the polynomial-sized sampler shares.

2.5.1 Defeating Rushing
In this section, we present a compiler that allows us to deal with rushing behaviour without adding any
additional rounds of interaction. This tool handles rushing behaviour not only for distributed samplers, but
for a wide range of applications (including our public-key PCF in Section 2.6). Consider any single-round
protocol with no private inputs, where SendMsg is the algorithm which party i runs to choose a message
to send, and Output is an algorithm that determines each party’s output (from party i’s state and all the
messages sent). More concretely, we can describe any such one-round protocol using the following syntax:

SendMsg(1λ, i; ri)→ gi generates party i’s message gi, and
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FNoRush

Initialisation. Upon receiving Init from every party and the adversary, the functionality activates and
enters the querying phase.
Querying phase. Upon receiving the id-th Query from the adversary, the functionality waits for ri
from every corrupted party Pi. Then, for every h ∈ H, it samples rh $← {0, 1}L(λ) and computes
gi ← SendMsg(1λ, i; ri) for every i ∈ [n]. Finally, it stores (ri, gi)i∈[n] along with the identity id and
sends (gh)h∈H back to the adversary.
Output. Upon receiving Output from the adversary, the functionality waits for a value îd from the
adversary, and retrieves the corresponding tuple (ri, gi)i∈[n] (or outputs ⊥ if there is no such tuple). It
then outputs rh and (gi)i∈[n] to Ph for every h ∈ H.

Figure 2.11: The Anti-Rushing Functionality FNoRush

Output(i, ri, (gj)j∈[n])→ resi produces party i’s output resi.

(In the case of distributed samplers, SendMsg corresponds to Gen, and Output corresponds to Sample.)
We define modified algorithms (ARMsg,AROutput) such that the associated one-round protocol realizes an

ideal functionality that first waits for the corrupted parties’ randomness, and then generates the randomness
and messages of the honest parties.

This functionality clearly denies the adversary the full power of rushing: the ability to choose corrupt
parties’ messages based on honest parties’ messages. For this reason, we call it the no-rush functionality
FNoRush. However, we do allow the adversary a weaker form of rushing behaviour: selective sampling. The
functionality allows the adversary to re-submit corrupt parties’ messages as many times as it wants, and
gives the adversary the honest parties’ messages in response (while hiding the honest parties’ randomness).
At the end, the adversary can select which execution she likes the most.
Definition 2.5.1 (Anti-Rusher). Let (SendMsg,Output) be a one-round n-party protocol where SendMsg
needs L(λ) bits of randomness to generate a message. An anti-rusher for SendMsg is a one-round protocol
(ARMsg,AROutput) implementing the functionality FNoRush (see Figure 2.11) for SendMsg against an active
adversary.

If (SendMsg,Output) = (Gen,Sample) is a distributed sampler with semi-malicious security, applying this
transformation gives a distributed sampler with active security.

Intuition Behind our Anti-Rushing Compiler.

We define (ARMsg,AROutput) as follows. When called by party i, ARMsg outputs an obfuscated program
Si; this program takes as input a response of the random oracle, and uses it as a nonce for a PRF FKi .
The program then feeds the resulting pseudorandom string r into SendMsg, and outputs whatever message
SendMsg generates. Our techniques are inspired by the delayed backdoor programming technique of Hofheinz
et al. [HJK+16], used for adaptively secure universal samplers.

The trapdoor. In order to prove that our compiler realizes FNoRush for SendMsg, a simulator must be able
to force the compiled protocol to return given outputs of SendMsg, even after sending messages (outputs of
ARMsg) on behalf of the honest parties.

Behind its usual innocent behaviour, the program Si hides a trapdoor that allows it to secretly commu-
nicate with the random oracle. Si owns a key ki for a special authenticated encryption scheme based on
puncturable PRFs. Every time it receives a random oracle response as input, Si parses it as a ciphertext-
nonce pair and tries to decrypt it. If decryption succeeds, Si outputs the corresponding plaintext; otherwise,
it resumes the usual innocent behaviour, and runs SendMsg. (The encryption scheme guarantees that the
decryption of random strings fails with overwhelming probability; this trapdoor is never used accidentally,
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PAR[SendMsg, k,K, i]

Hard-coded. The algorithm SendMsg, PRF keys k and K and the index i of the party.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v)

2. For every j ∈ [m] set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

3. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

4. Set r ← FK(u, v).

5. Output gi ← SendMsg(1λ, i; r).

Figure 2.12: The Anti-Rushing Program

but it will play a crucial role in the proof.) Obfuscation conceals how the result has been computed as long
as it is indistinguishable from a random SendMsg output.

The inputs fed into (Si)i∈[n] are generated by querying the random oracle with the programs themselves
and NIZKs proving their well-formedness. The random oracle response consists of a random nonce v and
additional n blocks (ui)i∈[n], the i-th one of which is addressed to Si. The input to Si will be the pair (ui, v).
When the oracle tries to secretly communicate a message to Si, ui will be a ciphertext, whereas v will be
the corresponding nonce.

Given a random oracle query, using the simulation-extractability of the NIZKs, the simulator can retrieve
the secrets (in particular, the PRF keys) of the corrupted parties. It can then use this information to learn the
randomness used to generate the corrupted parties’ messages (i.e. their outputs of SendMsg). The simulator
then needs only to encrypt these messages received from FNoRush using (ki)i∈H , and include these ciphertexts
in the oracle response.

Formal Description of our Anti-Rushing Compiler.

We now formalise the ideas we presented in the previous paragraphs. Our anti-rushing compiler is described
in Figure 2.13. The unobfuscated program PAR is available in Figure 2.12. We assume that its obfuscation
needs M(λ) bits of randomness. Observe that PAR is based on two puncturable PRFs F and F ′, the first
one of which is used to generate the randomness fed into SendMsg.

The second puncturable PRF is part of the authenticated encryption scheme used in the trapdoor.
We assume that its outputs are naturally split into 2m λ-bit blocks, where m(λ) is the size of an output
of SendMsg (after padding). To encrypt a plaintext (x1, . . . , xm) ∈ {0, 1}m using the key k and nonce
v ∈ {0, 1}λ, we first expand v using F ′k. The ciphertext consists of m λ-bit blocks, the j-th one of which
coincides with the (2j+xj)-th block output by F ′. Decryption is done by reversing these operations. For this
reason, we assume that the values (ui)i∈[n] in the oracle responses are naturally split into m λ-bit chunks.
Observe that if the j-th block of the ciphertext is different from both the 2j-th and the (2j + 1)-th block
output by the PRF, decryption fails.

Finally, let NIZK′ = (Gen,Prove,Verify,Sim1,Sim2,Extract) be a simulation-extractable NIZK for the
relationR describing the well-formedness of the obfuscated programs (Si)i∈[n]. Formally, a statement consists
of the pair (Si, i), whereas the corresponding witness is the triple containing the PRF keys ki and Ki hard-
coded in Si and the randomness used for the obfuscation of the latter.
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Anti-Rushing Compiler ΠNoRush

URS. The protocol needs a URS urs
$← NIZK′.Gen(1λ) for the NIZK proofs.

ARMsg(1λ, i, urs):

1. ki $← {0, 1}λ

2. Ki
$← {0, 1}λ

3. wi $← {0, 1}M(λ)

4. Si ← iO
(
1λ,PAR[SendMsg, ki,Ki, i];wi

)
(see Figure 2.12)

5. πi $← Prove
(
1λ, urs, (Si, i), (ki,Ki, wi)

)
6. Output armsgi := (Si, πi).

AROutput
(
i,
(
armsgj = (Sj , πj)

)
j∈[n]

, urs
)

:

1. If there exists j ∈ [n] such that Verify
(
urs, πj , (Sj , j)

)
= 0, output ⊥.

2. Query (Sj , πj)j∈[n] to the random oracle H to get
(
v, (uj)j∈[n]

)
.

3. ∀j ∈ [n] : gj ← Sj(uj , v).

4. Output (gj)j∈[n] and FKi(ui, v).

Figure 2.13: Anti-Rushing Compiler
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Theorem 2.5.2. If (SendMsg,Output) is a one-round n-party protocol, NIZK′ = (Gen,Prove,Verify,Sim1,
Sim2,Extract) is a simulation-extractable NIZK with URS for the relation R, iO is an indistinguishability
obfuscator and (F,Punct) and (F ′,Punct′) are two puncturable PRFs satisfying the properties described
above, the protocol ΠNoRush = (ARMsg,AROutput) described in Figure 2.13 realizes FNoRush for SendMsg in
the random oracle model with a URS.

Proof. The techniques used in this proof are inspired by [HJK+16]. We prove the security of the protocol
ΠNoRush described in Figure 2.13 by showing that it implements the functionality FNoRush (see Figure 2.11) in
the UC-model [Can01]. We achieve this plan through a series of hybrids allowing us to transition from the
real protocol ΠNoRush (Hybrid 0) to the composition of FNoRush with a PPT simulator (Hybrid 14). In all the
stages, we assume that the keys kh and Kh are uniformly sampled in {0, 1}λ for every h ∈ H. Moreover, we
assume, without loss of generality, that we deal with adversaries that always query the elements (Si, πi)i∈[n]

to the random oracle before broadcasting (Si, πi)i∈C to the honest parties.
Hybrid 0. This is the initial stage, corresponding to the real world. The simulator generates the

URS, the programs of the honest parties (Sh)h∈H , the corresponding NIZKs and the final outputs as per
the protocol ΠNoRush. Moreover, it replies to the random oracle queries of the adversary sampling random
strings. If any value is queried multiple times, the simulator takes care to answer always in the same way.
Observe that with overwhelming probability, the final outputs are generated without using the trapdoor of
the anti-rushing programs.

Hybrid 1. In this hybrid, we substitute the URS and the NIZKs proving the well-formedness of the
programs of the honest parties with the outputs of the simulators NIZK′.Sim1 and NIZK′.Sim2. In this way, we
remove any information concerning the keys of the honest parties from (πh)h∈H . Hybrid 1 is indistinguishable
from Hybrid 0 due to the multi-theorem zero-knowledge of NIZK′.

Formally speaking, the simulator generates the URS and the anti-rushing messages (Sh, πh)h∈H as follows
(the red text indicates what changed since the last hybrid).

1. ∀h ∈ H : Sh
$← iO(1λ,PAR[SendMsg, kh,Kh, h])

2. (urs, τ)
$← NIZK′.Sim1(1λ)

3. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Next, for every q from 1 to the number of random oracle queries issued by the adversary, we proceed

from Hybrid 2.q to Hybrid 13.q.
Hybrid 2.q. In this hybrid, we schedule the q-th oracle response

(
v̂, (ûi)i∈[n]

)
before generating the

programs of the honest parties. Furthermore, for every honest party h, we puncture the key Kh in (ûh, v̂)
and we store it in Sh. We also program the latter to output the appropriate result when (ûh, v̂) is input.
Observe that with overwhelming probability, such input does not activate the trapdoor in Sh. By the
correctness of puncturing, the input-output behaviour of the honest parties’ programs is the same as in the
previous hybrid. Hence, indistinguishability holds by the security of iO.

The formal steps performed by the simulator in order to generate (Sh, πh)h∈H are described below.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : r̂h ← FKh(ûh, v̂)

5. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

6. ∀h ∈ H : Sh
$← iO(1λ,P1

AR[SendMsg, kh, K̂h, h, ûh, v̂, ĝh]) (see Figure 2.14)

7. (urs, τ)
$← NIZK′.Sim1(1λ)
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P1
AR[SendMsg, k,K, i, û, v̂, ĝ]

Hard-coded. The algorithm SendMsg, the PRF keys k andK and the index i of the party. Moreover,
the scheduled oracle response (û, v̂) to the q-th query and the corresponding output ĝ.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. If (u, v) = (û, v̂), output ĝ

2. (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v)

3. For every j ∈ [m] set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

4. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

5. Set r ← FK(u, v).

6. Output g← SendMsg(1λ, i; r).

Figure 2.14: The Anti-Rushing Program

8. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 3.q. In this hybrid, on behalf of every honest party h, the simulator generates the element

ĝh hard-coded into Sh using true randomness r̂h instead of the output of F . Moreover, if the anti-rushing
messages (armsgi)i∈C of the corrupted parties are valid and correspond to the q-th oracle query, for every h ∈
H, the simulator directly outputs r̂h to Ph, instead of using FKh . Observe that this hybrid is indistinguishable
from the previous one due to the security of the puncturable PRF F .

The precise procedure used by the simulator to generate (Sh, πh)h∈H is the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : r̂h

$← {0, 1}L(λ)

5. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

6. ∀h ∈ H : Sh
$← iO(1λ,P1

AR[SendMsg, kh, K̂h, h, ûh, v̂, ĝh]) (see Figure 2.14)

7. (urs, τ)
$← NIZK′.Sim1(1λ)

8. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 4.q. For every honest party h, we now puncture the PRF key kh in v̂. Furthermore, we hard-code

into Sh the output of F ′kh(v̂) and we use it to compute the result when v̂ is input. Since the input-output
behaviour of the program remains the same as in the previous hybrid, indistinguishability holds due to the
security of iO.

The formal steps performed by the simulator for the generation of the the anti-rushing messages of the
honest parties change as follows.
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P2
AR[SendMsg, k,K, i, û, v̂, ĝ, (ŷbj)j,b]

Hard-coded. The algorithm SendMsg, the PRF keys k andK and the index i of the party. Moreover,
the scheduled oracle response (û, v̂) to the q-th query and the corresponding output ĝ. Finally, the
PRF output (ŷbj)j,b.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. If (u, v) = (û, v̂), output ĝ

2. If v = v̂, for every j ∈ [m], set

xj ←


0 if ŷ0

j = uj ,

1 if ŷ1
j = uj ,

⊥ otherwise.

3. Otherwise, compute (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v) and, for every j ∈ [m], set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

4. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

5. Set r ← FK(u, v).

6. Output g← SendMsg(1λ, i; r).

Figure 2.15: The Anti-Rushing Program

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H : (ŷbh,j)j,b ← F ′kh(v̂)

6. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

7. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

8. ∀h ∈ H : Sh
$← iO(1λ,P2

AR[SendMsg, k̂h, K̂h, h, ûh, v̂, ĝh, (ŷ
b
h,j)j,b]) (see Figure 2.15)

9. (urs, τ)
$← NIZK′.Sim1(1λ)

10. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 5.q. In this hybrid, on behalf of every honest party h, the simulator generates the values (ŷbh,j)j,b

sampling them uniformly in {0, 1}λ instead of using the PRF F ′. This hybrid is indistinguishable from the
previous one due to the security of the puncturable PRF F ′.

The specific steps performed by the simulator for the generation of (Sh, πh)h∈H are the following.
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1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H, j ∈ [m] and b ∈ {0, 1} : ŷbh,j
$← {0, 1}λ

6. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

7. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

8. ∀h ∈ H : Sh
$← iO(1λ,P2

AR[SendMsg, k̂h, K̂h, h, ûh, v̂, ĝh, (ŷ
b
h,j)j,b]) (see Figure 2.15)

9. (urs, τ)
$← NIZK′.Sim1(1λ)

10. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 6.q. In this hybrid, we rely on an injective double-lengthening PRG PRG : {0, 1}λ → {0, 1}2λ.

Instead of hard-coding the values (ŷbh,j)j,b in Sh, the simulator now stores their images (êbh,j)j,b under the PRG
PRG, i.e. êbh,j = PRG(ŷbh,j). Furthermore, when v̂ is input in Sh, the program decodes now xj by comparing
PRG(uj) to ê0

h,j and ê1
h,j . Observe that since PRG is injective, uj = ŷbh,j if and only if PRG(uj) = êbh,j . In

other words, the input-output behaviour of the programs of the honest parties did not change with respect
to the previous hybrid. Therefore, indistinguishability holds by the security of iO.

The formal procedure performed by the simulator for the generation of (Sh, πh)h∈H is the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H, j ∈ [m] and b ∈ {0, 1} : ŷbh,j
$← {0, 1}λ

6. ∀h ∈ H, j ∈ [m] and b ∈ {0, 1} : êbh,j ← PRG(ŷbh,j)

7. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

8. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

9. ∀h ∈ H : Sh
$← iO(1λ,P3

AR[SendMsg, k̂h, K̂h, h, ûh, v̂, ĝh, (ê
b
h,j)j,b]) (see Figure 2.16)

10. (urs, τ)
$← NIZK′.Sim1(1λ)

11. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 7.q. In this hybrid, instead of generating the values (êbh,j)j,b using the PRG PRG, the simulator

samples them uniformly in {0, 1}2λ for every h ∈ H. By the security of PRG, this hybrid is therefore
indistinguishable from the previous one. Here, we are actually relying on the fact that, with overwhelming
probability, the terms (ŷbh,j)j,b are not used for the generation the first q − 1 oracle responses. This is a
consequence of the fact that, with overwhelming probability, v̂ is different from the nonces in the first q − 1
oracle answers.

The procedure used by the simulator becomes now the following.
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P3
AR[SendMsg, k,K, i, û, v̂, ĝ, (êbj)j,b]

Hard-coded. The algorithm SendMsg, PRF keys k and K and the index i of the party. Moreover,
the scheduled oracle response (û, v̂) to the q-th query and the corresponding output ĝ. Finally, the
PRG outputs (êbj)j,b.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. If (u, v) = (û, v̂), output ĝ

2. If v = v̂, for every j ∈ [m], set

xj ←


0 if ê0

j = PRG(uj),

1 if ê1
j = PRG(uj),

⊥ otherwise.

3. Otherwise, compute (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v) and, for every j ∈ [m], set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

4. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

5. Set r ← FK(u, v).

6. Output g← SendMsg(1λ, i; r).

Figure 2.16: The Anti-Rushing Program

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H, j ∈ [m] and b ∈ {0, 1} : êbh,j
$← {0, 1}2λ

6. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

7. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

8. ∀h ∈ H : Sh
$← iO(1λ,P3

AR[SendMsg, k̂h, K̂h, h, ûh, v̂, ĝh, (ê
b
h,j)j,b]) (see Figure 2.16)

9. (urs, τ)
$← NIZK′.Sim1(1λ)

10. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 8.q. Starting from this hybrid, the program Sh generates the element ĝh using the trapdoor

mechanism. Compared to the previous stage, the only thing that actually changes is how the values (êbh,j)j,b
are generated. Specifically, the simulator first encodes the element ĝh as a bit string x̂h. Then, for every
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j ∈ [m], it sets êx̂
j
h

h,j to PRG(ûjh). The remaining value ê1−x̂jh
h,j is instead sampled uniformly in {0, 1}2λ as in

the previous hybrid. Observe that in this way, even if we remove the first line from P3
AR, Sh keeps outputting

ĝh when (ûh, v̂) is provided as input. We call the program obtained in this way P4
AR.

It is possible to conclude that P3
AR and P4

AR have actually the same input-output behaviour. The claim is
trivially verifiable when the input (u, v) coincides with the hard-coded pair (û, v̂) or v 6= v̂. If instead v = v̂
and u 6= û, the matter is a little more complex.

Observe that the image of the PRG PRG has 2λ elements and they are embedded into a space of cardinality
22λ. Since the latter is much larger, with overwhelming probability, values uniformly sampled in {0, 1}2λ do
not belong to the image of PRG. In particular, this holds for those elements among (êbh,j)j,b that are sampled
uniformly. For such values, there is no chance that êbh,j = G(ûjh). As a consequence, the output of P3

AR is
never generated using the trapdoor when v = v̂. In the case of P4

AR instead, the only input with v = v̂ that
activates the trapdoor is (û, v̂) due to the injectivity of PRG.

In this way, we have proven that Hybrid 8.q is indistinguishable from the previous one due to security of
iO. The formal description of the steps performed by the simulator is available below.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

6. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

7. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

8. ∀h ∈ H and j ∈ [m] : ê
x̂jh
h,j ← PRG(ûjh)

9. ∀h ∈ H and j ∈ [m] : ê
1−x̂jh
h,j

$← {0, 1}2λ

10. ∀h ∈ H : Sh
$← iO(1λ,P4

AR[SendMsg, k̂h, K̂h, h, v̂, (ê
b
h,j)j,b]) (see Figure 2.17)

11. (urs, τ)
$← NIZK′.Sim1(1λ)

12. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 9.q. In this hybrid, the simulator changes the way it generates those values among (êbh,j)j,b that

were previously sampled uniformly in {0, 1}2λ. For each of them, it indeed chooses a random λ-bit seed ŷbh,j
and sets êbh,j ← PRG(ŷbh,j). This hybrid is therefore indistinguishable from the previous one by the PRG
security of PRG. The procedure describing the steps of the simulator is now the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

6. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)
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P4
AR[SendMsg, k,K, i, v̂, (êbj)j,b]

Hard-coded. The algorithm SendMsg, the PRF keys k andK and the index i of the party. Moreover,
the scheduled nonce v̂ for the q-th oracle query and the values (êbj)j,b.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. If v = v̂, for every j ∈ [m], set

xj ←


0 if ê0

j = PRG(uj),

1 if ê1
j = PRG(uj),

⊥ otherwise.

2. Otherwise, compute (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v) and, for every j ∈ [m], set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

3. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

4. Set r ← FK(u, v).

5. Output g← SendMsg(1λ, i; r).

Figure 2.17: The Anti-Rushing Program

7. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

8. ∀h ∈ H and j ∈ [m] : ŷ
x̂jh
h,j ← ûjh

9. ∀h ∈ H and j ∈ [m] : ŷ
1−x̂jh
h,j

$← {0, 1}λ

10. ∀h ∈ H, j ∈ [m] and b ∈ {0, 1} : êbh,j ← PRG(ŷbh,j)

11. ∀h ∈ H : Sh
$← iO(1λ,P4

AR[SendMsg, k̂h, K̂h, h, v̂, (ê
b
h,j)j,b]) (see Figure 2.17)

12. (urs, τ)
$← NIZK′.Sim1(1λ)

13. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 10.q. In this hybrid, instead of hard-coding the values (êbh,j)j,b in Sh, the simulator stores their

preimages (ŷbh,j)j,b under the PRG PRG. Furthermore, when v̂ is input into Sh, the program decodes xj by
comparing uj to ŷ0

h,j and ŷ1
h,j . Observe that since PRG is injective, uj = ŷbh,j if and only if PRG(uj) = êbh,j .

In other words, the input-output behaviour of the programs of the honest parties did not change with respect
to the previous hybrid. Therefore, indistinguishability holds by the security of iO.

The formal procedure performed by the simulator for the generation of (Sh, πh)h∈H is the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ [n] : ûi
$← {0, 1}m·λ
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P5
AR[SendMsg, k,K, i, v̂, (ŷbj)j,b]

Hard-coded. The algorithm SendMsg, the PRF keys k andK and the index i of the party. Moreover,
the scheduled nonce v̂ for the q-th oracle query and the values (ŷbj)j,b.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. If v = v̂, for every j ∈ [m], set

xj ←


0 if ŷ0

j = uj ,

1 if ŷ1
j = uj ,

⊥ otherwise.

2. Otherwise, compute (y0
1 , y

1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v) and, for every j ∈ [m], set

xj ←


0 if y0

j = uj ,

1 if y1
j = uj ,

⊥ otherwise.

3. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).

4. Set r ← FK(u, v).

5. Output g← SendMsg(1λ, i; r).

Figure 2.18: The Anti-Rushing Program

3. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
4. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

5. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

6. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

7. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

8. ∀h ∈ H and j ∈ [m] : ŷ
x̂jh
h,j ← ûjh

9. ∀h ∈ H and j ∈ [m] : ŷ
1−x̂jh
h,j

$← {0, 1}λ

10. ∀h ∈ H : Sh
$← iO(1λ,P5

AR[SendMsg, k̂h, K̂h, h, v̂, (ŷ
b
h,j)j,b]) (see Figure 2.18)

11. (urs, τ)
$← NIZK′.Sim1(1λ)

12. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 11.q. In this hybrid, we finally change the oracle response to the q-th query of the adversary,

substituting the random values (ûh)h∈H with the encryption of the elements (ĝh)h∈H .
Actually, the only thing that changes is the distribution of the terms (ŷbh,j)j,b. Indeed, they are not

uniform in {0, 1}λ anymore, but they are generated by the simulator as F ′kh(v̂). Since ŷx̂
j
h

h,j = ûjh for every
j ∈ [m] and h ∈ H, we also modify the values (ûh)h∈H accordingly.
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Observe that this hybrid is indistinguishable from the previous one by the security of the puncturable
PRF F ′. The formal procedure used by the simulator for the generation of (Sh, πh)h∈H and the q-th oracle
response becomes the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ C : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : k̂h ← Punct′(kh, v̂)

4. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

5. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

6. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

7. ∀h ∈ H : (ŷbh,j)j,b ← F ′kh(v̂)

8. ∀h ∈ H and j ∈ [m] : ûjh ← ŷ
x̂jh
h,j

9. ∀h ∈ H : K̂h ← Punct
(
Kh, (ûh, v̂)

)
10. ∀h ∈ H : Sh

$← iO(1λ,P5
AR[SendMsg, k̂h, K̂h, h, v̂, (ŷ

b
h,j)j,b]) (see Figure 2.18)

11. (urs, τ)
$← NIZK′.Sim1(1λ)

12. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
Hybrid 12.q. In this hybrid, the simulator generates the programs of the honest parties by obfuscating

PAR, as in the original protocol. We however keep replying to the q-th oracle query of the adversary as in
Hybrid 11.q. Indistinguishability from the previous stage is guaranteed by the security of iO. As a matter
of fact, the programs P5

AR (as in Hybrid 11.q) and PAR have the same input-output behaviour.
Formally, the anti-rushing messages (Sh, πh)h∈H are generated as follows.

1. ∀h ∈ H : Sh
$← iO(1λ,PAR[SendMsg, kh,Kh, h]) (see Figure 2.12)

2. (urs, τ)
$← NIZK′.Sim1(1λ)

3. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Sh, h)

)
The procedure for the generation of the q-th oracle response is instead the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ C : ûi
$← {0, 1}m·λ

3. ∀h ∈ H : r̂h
$← {0, 1}L(λ)

4. ∀h ∈ H : ĝh ← SendMsg(1λ, h; r̂h)

5. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

6. ∀h ∈ H : (ŷbh,j)j,b ← F ′kh(v̂)

7. ∀h ∈ H and j ∈ [m] : ûjh ← ŷ
x̂jh
h,j
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Observe that the URS and the anti-rushing messages (armsgh)h∈H of the honest parties can be now generated
independently of the q-th oracle response. It is therefore possible to produce the q-th oracle answer on the
fly, after receiving the corresponding query.

Hybrid 13.q. In this hybrid, the simulator generates the elements (ĝh)h∈H hidden in the q-th oracle
response using the functionality FNoRush. The operation is actually performed only if the q-th oracle query
consists of n elements (Si, πi)i∈[n] where the values (Sh, πh)h∈H coincide with the anti-rushing messages of
the honest parties in the only round of interactions and, for every i ∈ C,

NIZK′.Verify
(
urs, πi, (Si, i)

)
= 1.

In such cases, the simulator extracts the witnesses from the NIZK proofs of the corrupted parties using
NIZK′.Extract, obtaining the corresponding PRF keys ki and Ki. By the extractability of NIZK′, the pro-
cedure is successful with overwhelming probability. If the q-th oracle query does not satisfy the properties
described above, the response is generated as in the previous stage.

More precisely, the simulator now samples the nonce v̂ and the terms (ûi)i∈C uniformly and retrieves the
randomness r̂i used for the generation of ĝi = Si(ûi, v̂) for every i ∈ C. Now, it is indeed possible to perform
the operation as the PRF key Ki is no longer secret. Moreover, with overwhelming probability, the pair
(ûi, v̂) does not activate the trapdoor in Si. The values (ĝh)h∈H are finally generated by sending (ĝi, r̂i)i∈C
to FNoRush.

At the end, if the anti-rushing messages of the corrupted parties correspond to the q-th oracle query, the
simulator retrieves the randomness of the honest parties (r̂h)h∈H by sending the label of the q-query to the
functionality.

Observe that this hybrid is indistinguishable from the previous one by the witness extractability of NIZK′.
The formal steps used for the generation of the q-th oracle query become now the following.

1. v̂ $← {0, 1}λ

2. ∀i ∈ C : ûi
$← {0, 1}m·λ

3. ∀i ∈ C : (ki,Ki, wi)← NIZK′.Extract
(
urs, τ, (Si, i), πi

)
4. ∀i ∈ C : r̂i ← FKi(ûi, v̂)

5. ∀i ∈ C : ĝi ← SendMsg(1λ, i; r̂i)

6. Send
(
Query, (ĝi, r̂i)i∈C

)
to FNoRush, obtaining

(
id, (ĝh)h∈H

)
as a reply.

7. For every h ∈ H, rewrite ĝh as an m-bit string x̂h.

8. ∀h ∈ H : (ŷbh,j)j,b ← F ′kh(v̂)

9. ∀h ∈ H and j ∈ [m] : ûjh ← ŷ
x̂jh
h,j

Hybrid 14. This stage corresponds to the ideal world and it just formalises what has been achieved
through the series of hybrids we described above.

At this point, the simulator generates the anti-rushing messages of the honest parties and the URS as in
Hybrid 1. Moreover, it replies to all the oracle queries as in Hybrid 13.q, receiving ideal (gh)h∈H from the
functionality FNoRush. We recall that each of these samples is associated with a label id, so there is a one-to-
one correspondence between labels and oracle queries. When the adversary selects the anti-rushing messages
(Si, πi)i∈C of the corrupted parties, the simulator sends the label of the corresponding oracle query to the
functionality. The latter will take care of outputting the associated randomness to the honest parties.

Theorem 2.5.3. Suppose that DS = (Gen,Sample) is a semi-maliciously secure distributed sampler for the
distribution D. Assume that there exists an anti-rusher for DS.Gen. Then, there exists an actively secure
distributed sampler for D.
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On the novelty of this compiler. Observe that the idea of a compiler converting passive protocols into
actively secure ones is not new. The most famous example is GMW [GMW87], which achieves this by adding
ZK proofs proving the well-formedness of all the messages in the protocol. The novelty of our construction
consists of doing this without increasing the number of rounds. GMW deals with rushing by requiring all the
parties to commit to their randomness at the beginning of the protocol and then prove that all the messages
in the interaction are consistent with the initial commitments. A passively secure one-round protocol would
therefore be compiled, in the best case, into a 2-round one.

Although the techniques were inspired by [HJK+16], this work employs the ideas in a new context,
generalising them to multiple players and applying them in multiparty protocols. Observe indeed that
[HJK+16] devised the techniques to construct adaptively secure universal samplers. To some extent, we still
use them to prevent the adversary from making adaptive choices.

2.6 Public-Key PCFs for Reverse-Samplable Correlations
We now consider the concept of a distributed correlation sampler, where the distribution D produces private,
correlated outputs R1, R2, . . . , Rn, where Ri is given only to the i-th party. This can also model the case
where the distribution D has only one output R = R1 = · · · = Rn, which must be accessible only to the
parties that took part in the computation (but not to outsiders; unlike with a distributed sampler).

PCGs and PCFs. The concept of distributed correlation samplers has been previously studied in the form
of pseudorandom correlation generators (PCGs) [BCGI18, BCG+19a, BCG+19b, BCG+20b] and pseudo-
random correlation functions (PCFs)[BCG+20a, OSY21]. These are tailored to distributions with n outputs,
each one addressed to a different player. Specifically, they consist of two algorithms (Gen,Eval): Gen is used
to generate n short correlated seeds or keys, one for each party. Eval is then used to locally expand the keys
and non-interactively produce a large amount of correlated randomness, analogously to the non-correlated
setting of a PRG (for PCG) or PRF (for PCF).

Both PCGs and PCFs implicitly rely on a trusted dealer for the generation and distribution of the output
of Gen, which in practice can be realized using a secure multiparty protocol. The communication overhead
of this computation should be small, compared with the amount of correlated randomness obtained from
Eval.

If we consider a one-round protocol to distribute the output of Gen, the message of the i-th party and
the corresponding randomness ri act now as a kind of public/private key pair (ri is necessary to retrieve the
i-th output.) Such a primitive is called a public-key PCF [OSY21]. Orlandi et al. [OSY21] built public-key
PCFs for the random OT and vector-OLE correlations based on Paillier encryption with a common reference
string (a trusted RSA modulus). In this section, we will build public-key PCFs for general correlations, while
avoiding trusted setups.

2.6.1 Correlation Functions and their Properties
Instead of considering singe-output distributions D, we now consider n-output correlations C. We also allow
different samples from C to themselves be correlated by some secret parameters, which allows handling
correlations such as vector-OLE and authenticated multiplication triples (where each sample depends on
some fixed MAC keys). This is modelled by allowing each party i to input a master secret mki into C. These
additional inputs are independently sampled by each party using an algorithm Secret.

Some example correlations.

Previous works have focussed on a simple class of additive correlations, where the outputs R1, . . . , Rn form
an additive secret sharing of values sampled from a distribution. This captures, for instance, oblivious
transfer, (vector) oblivious linear evaluation and (authenticated) multiplication triples, which are all useful
correlations for secure computation tasks. Vector OLE and authenticated triples are also examples requiring
a master secret, which is used to fix a secret scalar or secret MAC keys used to produce samples. Assuming
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LWE, we can construct public-key PCFs for any additive correlation [BCG+20a], using homomorphic secret-
sharing based on multi-key FHE [DHRW16]. However, we do not know how to build PCFs for broader classes
of correlations, except for in the two-party setting and relying on subexponentially secure iO [DHRW16].

As motivation, consider the following important types of non-additive correlations:
• Pseudorandom secret sharing. This can be seen as a correlation that samples sharings of uniformly

random values under some linear secret sharing scheme. Even for simple t-out-of-n threshold schemes
such as Shamir, the best previous construction requires

(
n
t

)
complexity [CDI05].

• Garbled circuits. In the two-party setting, one can consider a natural garbled circuit correlation, which
for some circuit C, gives a garbling of C to one party, and all pairs of input wire labels to the other
party. Having such a correlation allows preprocessing for secure 2-PC, where in the online phase, the
parties just use oblivious transfer to transmit the appropriate input wire labels.3 Similarly, this can be
extended to the multi-party setting, by for instance, giving n parties the garbled circuit together with
a secret-sharing of the input wire labels.

For garbled circuits, it may also be useful to consider a variant that uses a master secret, if e.g. we want
each garbled circuit to be sampled with a fixed offset used in the free-XOR technique [KS08].

Reverse-Samplable Correlations.

The natural way to define a public-key PCF would be a one-round protocol implementing the functionality
that samples from the correlation function C and distributes the outputs. However, Boyle et al. [BCG+19b]
prove that for PCGs, any construction satisfying this definition in the plain model would require that the
messages be at least as long as the randomness generated, which negates one of the main advantages of using
a PCF. Following the approach of Boyle et al., in this section we adopt a weaker definition. We require that
no adversary can distinguish the real samples of the honest parties from simulated ones which are reverse
sampled based on the outputs of the corrupted players. This choice restricts the set of correlation functions
to those whose outputs are efficiently reverse-samplable4. We formalise this property below.
Definition 2.6.1 (Reverse Samplable Correlation Function with Master Secrets). An n-party correlation
function with master secrets is a pair of PPT algorithms (Secret, C) with the following syntax:

• Secret takes as input the security parameter 1λ and the index of a party i ∈ [n]. It outputs the i-th
party’s master correlation secret mki.

• C takes as input the security parameter 1λ and the master secrets mk1, . . . ,mkn. It outputs n correlated
values R1, R2, . . . , Rn, one for each party.

We say that (Secret, C) is reverse samplable if there exists a PPT algorithm RSample such that, for every
set of corrupted parties C ( [n] and master secrets (mki)i∈[n] and (mk′h)h∈H in the image of Secret, no PPT
adversary is able to distinguish between C(1λ,mk1,mk2, . . . ,mkn) and(R1, R2, . . . , Rn)

∣∣∣∣∣∣∣∣∣∣
∀i ∈ C : mk′i ← mki

(R′1, R
′
2, . . . , R

′
n)

$← C(1λ,mk′1,mk′2, . . . ,mk′n)

∀i ∈ C : Ri ← R′i

(Rh)h∈H
$← RSample

(
1λ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)


Notice that indistinguishability cannot rely on the secrecy of the master secrets (mki)i∈[n] and (mk′h)h∈H ,

since the adversary could know their values. Furthermore, RSample does not take as input the same master
secrets that were used for the generation of the outputs of the corrupted parties. The fact that indistin-
guishability holds in spite of this implies that the elements (Ri)i∈C leak no information about the master
secrets of the honest players.

3Note that formally, in the presence of malicious adversaries, preprocessing garbled circuits in this way requires the garbling
scheme to be adaptively secure [BHR12].

4In the examples above, reverse-samplability is possible for pseudorandom secret-sharing, but not for garbled circuits, since
we should not be able to find valid input wire labels when given only a garbled circuit.
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GPCF-Corr(λ)
Initialisation.
1. b $← {0, 1}

2. ∀i ∈ [n] : (ski, pki)
$← Gen(1λ, i)

3. ∀i ∈ [n] : mk′i
$← Secret(1λ, i)

4. Activate the adversary with input (1λ, (pki)i∈[n]).
Repeated querying. On input (Correlation, x) from the adversary where x ∈ {0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)

2. (R1
i )i∈[n]

$← C(1λ,mk′1, . . . ,mk′n)

3. Give (Rb1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Figure 2.19: Correctness Game for the Public-Key PCF

2.6.2 Defining Public Key PCFs
We now formalise the definition of public key PCF as it was sketched at the beginning of the section. We start
by specifying the syntax, we will then focus our attention on security, in particular against semi-malicious
and active adversaries.
Definition 2.6.2 (Public-Key PCF with Master Secrets). A public-key PCF for the n-party correlation func-
tion with master secrets (Secret, C) is a pair of PPT algorithms (Gen,Eval) with the following syntax:

• Gen takes as input the security parameter 1λ and the index of a party i ∈ [n], and outputs the PCF
key pair (ski, pki) of the i-th party. Gen needs L(λ) bits of randomness.

• Eval takes as input an index i ∈ [n], n PCF public keys, the i-th PCF private key ski and a nonce
x ∈ {0, 1}l(λ). It outputs a value Ri corresponding to the i-th output of C.

Every public-key PCF (Gen,Eval) for C induces a one-round protocol ΠC . This is the natural construction
in which every party broadcasts pki output by Gen, and then runs Eval on all the parties’ messages, its own
private key and various nonces.
Definition 2.6.3 (Semi-Maliciously Secure Public-Key PCF for Reverse Samplable Correlation). Let
(Secret, C) be an n-party, reverse samplable correlation function with master secrets. A public-key PCF
(Gen,Eval) for (Secret, C) is semi-maliciously secure if the following properties are satisfied.

• Correctness. No PPT adversary can win the game GPCF-Corr(λ) (see Figure 2.19) with noticeable
advantage.

• Security. There exists a PPT extractor Extract such that for every set of corrupted parties C ( [n] and
corresponding randomness (ρi)i∈C , no PPT adversary can win the game GC,(ρi)i∈CPCF-Sec (λ) (see Figure 2.20)
with noticeable advantage.

Correctness requires that the samples output by the PCF are indistinguishable from those produced by
C even if the adversary receives all the public keys. Security instead states that a semi-malicious adversary
learns no information about the samples and the master secrets of the honest players except what can be
deduced from the outputs of the corrupted parties themselves.

Like for distributed samplers, the above definition can be adapted to passive security by modifying the
security game. Specifically, it would be sufficient to sample the randomness of the corrupted parties inside
the game, perhaps relying on a simulator when b = 1.
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GC,(ρi)i∈CPCF-Sec (λ)
Initialisation.
1. b $← {0, 1}

2. ∀h ∈ H : ρh
$← {0, 1}L(λ)

3. ∀i ∈ [n] : (ski, pki)← Gen(1λ, i; ρi)

4. (mki)i∈C ← Extract(C, ρ1, ρ2, . . . , ρn).
5. ∀h ∈ H : mk′h

$← Secret(1λ, h)

6. Activate the adversary with 1λ and provide it with (pki)i∈[n] and (ρi)i∈C .
Repeated querying. On input (Correlation, x) from the adversary where x ∈ {0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)

2. ∀i ∈ C : R1
i ← R0

i

3. (R1
h)h∈H

$← RSample
(
1λ, C, (R1

i )i∈C , (mki)i∈C , (mk′h)h∈H
)

4. Give (Rb1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Figure 2.20: Security Game for the Public-Key PCF

In our definition, nonces are adaptively chosen by the adversary; however, in a weak PCF [BCG+20a], the
nonces are sampled randomly or selected by the adversary ahead of time. We can define a weak public-key
PCF similarly, and use the same techniques as Boyle et al. [BCG+20a] to convert a weak public-key PCF
into a public-key PCF by means of a random oracle.

Active security. We define actively secure public-key PCFs using an ideal functionality, similarly to how
we defined actively secure distributed samplers.
Definition 2.6.4 (Actively Secure Public-Key PCF for Reverse Samplable Correlation). Let (Secret, C) be
an n-party reverse samplable correlation function with master secrets. A public-key PCF (Gen,Eval) for
(Secret, C) is actively secure if the corresponding one-round protocol ΠC implements the functionality FRSample

C
(see Figure 2.21) against a static and active adversary corrupting up to n− 1 parties.

Any protocol that implements FRSample
C will require either a CRS or a random oracle; this is inherent for

FRSample
C

Initialisation. On input Init from every honest party and the adversary, the functionality samples
mkh

$← Secret(1λ, h) for every h ∈ H and waits for (mki)i∈C from the adversary.
Correlation. On input a fresh nonce x ∈ {0, 1}l(λ) from a party Pj , the functionality waits for (Ri)i∈C
from the adversary. Then, it computes

(Rh)h∈H
$← RSample

(
1λ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)
,

sends Rj to Pj and stores
(
x, (Ri)i∈[n]

)
. If x has already been queried, the functionality retrieves the

stored tuple
(
x, (Ri)i∈[n]

)
and outputs Rj to Pj .

Figure 2.21: The Actively Secure Public-Key PCF Functionality for Reverse Samplable Correlation
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meaningful correlation functions, since the simulator needs to retrieve the values (Ri)i∈C in order to forward
them to FRSample

C . Therefore, some kind of trapdoor is needed.
Notice also that the algorithm RSample takes as input the master secrets of the corrupted parties. We can

therefore assume that whenever the values (Ri)i∈C chosen by the adversary are inconsistent with (mki)i∈C
or with C itself, the output of the reverse sampler is ⊥. As a consequence, an actively secure public-key PCF
must not allow the corrupted parties to select these irregular outputs; otherwise distinguishing between real
world and ideal world would be trivial.

2.6.3 Public-Key PCF with Trusted Setup

We will build our semi-maliciously secure public-key PCF by first relying on a trusted setup and then remov-
ing it by means of a distributed sampler. A public-key PCF with trusted setup is defined by Definition 2.6.2
to include an algorithm Setup that takes as input the security parameter 1λ and outputs a CRS. The CRS is
then provided as an additional input to the evaluation algorithm Eval, but not to the generation algorithm
Gen. (If Gen required the CRS, then substituting Setup with a distributed sampler would give us a two-round
protocol, not a one-round protocol.)

We say that a public-key PCF with trusted setup is semi-maliciously secure if it satisfies Definition 2.6.3,
after minor tweaks to the games GPCF-Corr(λ) and GC,(ρi)i∈CPCF-Sec (λ) to account for the modified syntax. Notice
that in the latter, the extractor needs to be provided with the CRS but not with the randomness used to
produce it. If that was not the case, we would not be able to use a distributed sampler to remove the CRS.

Definition of public key PCF with trusted setup. We formalise the concept of public key PCF with
trusted setup describing its syntax and security properties. The definitions closely resemble those of public
key PCF (see Definition 2.6.2 and Definition 2.6.3). The only difference consists in the CRS generated by
the setup algorithm, which is now provided as an additional input to Eval and Extract and whose value is
always disclosed to the adversary in the security games.

Definition 2.6.5 (Public Key PCF with Trusted Setup). A public key PCF with trusted setup for the n-party
correlation function with master secret (Secret, C) is a triple of PPT algorithms (Setup,Gen,Eval) with the
following syntax:

• Setup takes as input the security parameter 1λ and outputs a CRS S.

• Gen takes as input the security parameter 1λ and the index of a party i ∈ [n], outputting the PCF key
pair (ski, pki) of the i-th party. The algorithm needs L(λ) bits of randomness.

• Eval takes as input an index i ∈ [n], a CRS S, n PCF public keys, one for each party, the PCF private
key ski of the i-th party and a nonce x ∈ {0, 1}l(λ). The output is a value Ri corresponding to the i-th
output of C.

Definition 2.6.6 (Semi-Maliciously Secure Public Key PCF with Trusted Setup for Reverse Samplable Corre-
lation). Let (Secret, C) be an n-party, reverse samplable correlation function with master secret. A public key
PCF with trusted setup (Setup,Gen,Eval) for (Secret, C) is semi-maliciously secure if the following properties
are satisfied.

• Correctness. No PPT adversary can win the game GSetupCorr(λ) (see Figure 2.22) with noticeable
advantage.

• Security. There exists a PPT extractor Extract such that for every set of corrupted parties C ( [n] and
corresponding randomness (ρi)i∈C , no PPT adversary can win the game GC,(ρi)i∈CSetupSec (λ) (see Figure 2.23)
with noticeable advantage.
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GSetupCorr(λ)
Initialisation.
1. b $← {0, 1}

2. S $← Setup(1λ)

3. ∀i ∈ [n] : (ski, pki)
$← Gen(1λ, i)

4. ∀i ∈ [n] : mk′i
$← Secret(1λ, i)

5. Activate the adversary with 1λ and provide it with (pki)i∈[n] and S.
Repeated querying. On input (Correlation, x) from the adversary where x ∈ {0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, S, pk1, pk2, . . . , pkn, ski, x)

2. (R1
i )i∈[n]

$← C(1λ,mk′1, . . . ,mk′n)

3. Give (Rb1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Figure 2.22: Correctness Game for Public Key PCFs with Setup

GC,(ρi)i∈CSetupSec (λ)
Initialisation.
1. b $← {0, 1}

2. S $← Setup(1λ)

3. ∀h ∈ H : ρi
$← {0, 1}L(λ)

4. ∀i ∈ [n] : (ski, pki)← Gen(1λ, i; ρi)

5. (mki)i∈C ← Extract(C, S, ρ1, ρ2, . . . , ρn).
6. ∀h ∈ H : mk′h

$← Secret(1λ, h)

7. Activate the adversary with 1λ and provide it with (pki)i∈[n], S and (ρi)i∈C .
Repeated querying. On input (Correlation, x) from the adversary where x ∈ {0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, S, pk1, . . . , pkn, ski, x)

2. ∀i ∈ C : R1
i ← R0

i

3. (R1
h)h∈H

$← RSample
(
1λ, C, (R1

i )i∈C , (mki)i∈C , (mk′h)h∈H
)

4. Give (Rb1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Figure 2.23: Security Game for Public Key PCFs with Setup
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Our public-key PCF with trusted setup. Our construction is based once again on iO. The key of
every party i is a simple PKE pair (ski, pki). The generation of the correlated samples and their distribution
is handled by the CRS, which is an obfuscated program. Specifically, the latter takes as input the public
keys of the parties and a nonce x ∈ {0, 1}l(λ). After generating the master secrets mk1,mk2, . . . ,mkn using
Secret and the correlated samples R1, R2, . . . , Rn using C, the program protects their privacy by encrypting
them under the provided public keys. Specifically, Ri and mki are encrypted using pki, making the i-th
party the only one able to retrieve the underlying plaintext.

The randomness used for the generation of the samples, the master secrets and the encryption is produced
by means of two puncturable PRF keys k and K, known to the CRS program. The CRS program is equipped
with two keys: k and K. The first one is used to generate the master secrets; the input to the PRF is the
sequence of all public keys (pk1, pk2, . . . , pkn)). The master secrets remain the same if the nonce x varies.
The second PRF key is used to generate the randomness fed into C and the encryption algorithm; here, the
PRF input consists of all the program inputs. As a result, any slight change in the inputs leads to completely
unrelated ciphertexts and samples.

On the size of the nonce space. Unfortunately, in order to obtain semi-maliciously security, we need to
assume that the nonce space is of polynomial size. In the security proof, we need to change the behaviour
of the CRS program for all nonces. This is due to the fact that we cannot rely on the reverse samplability
of the correlation function as long as the program contains information about the real samples of the honest
players. If the number of nonces is exponential, our security proof would rely on a non-polynomial number
of hybrids and therefore we would need to assume the existence of sub-exponentially secure primitives.

The formal description of our solution. Our public-key PCF with trusted setup for (Secret, C) is
described in Figure 2.24 together with the program PCG used as a CRS.

Our solution relies on an IND-CPA PKE scheme PKE = (Gen,Enc,Dec) and two puncturable PRFs F
and F ′. We assume that the output of the first one is naturally split into n+ 1 blocks, the initial one as big
as the randomness needed by C, the remaining ones the same size as the random tape of PKE.Enc. We also
assume that the output of F ′ is split into n blocks as big as the randomness used by Secret.
Theorem 2.6.7 (Public Key PCFs with Trusted Setup). Let (Secret, C) be an n-party, reverse samplable
correlation function with master secrets. If PKE = (Gen,Enc,Dec) is an IND-CPA PKE scheme, iO is
an indistinguishability obfuscator, (F,Punct) and (F ′,Punct′) are puncturable PRFs with the properties
described above and l(λ) is polylog(λ), the construction presented in Figure 2.24 is a semi-maliciously secure
public-key PCF with trusted setup for (Secret, C).

Furthermore, if PKE, iO, (F,Punct) and (F ′,Punct′) are sub-exponentially secure, the public-key PCF
with trusted setup is semi-maliciously secure even if l(λ) is poly(λ).

In both cases, the size of the CRS and the PCF keys is poly(l).

Proof. We show that the public key PCF with trusted setup described in Figure 2.24 is semi-maliciously
secure. We prove both correctness and security in one go. As a matter of fact, correctness can be regarded as
the special case of security in which C = ∅. Observe that in such case, we can always assume that RSample
samples directly from C using randomly chosen master secrets (mk′i)i∈[n].

We proceed by a sequence of 12 indistinguishable hybrids (some of them repeated for every possible nonce
value) going from the real world (Hybrid 0) to the ideal world (Hybrid 12). The size of the nonce space
will affect the proof only on the number of reductions needed. Specifically, the number of hybrids will be
polynomial if and only if the cardinality of the nonce space is polynomial. In the other cases, we will need
to assume the existence of sub-exponentially secure primitives.

We always assume that the PRF keys k and K hard-coded into the correlation generation program CGP
are randomly sampled in {0, 1}λ. Moreover, in every stage, we assume that the PKE pairs of the parties
are all generated according to the protocol, using the randomness parametrising the game in the case of the
corrupted players. We denote the i-th pair by (ŝki, p̂ki).

Hybrid 0. This is the initial hybrid and corresponds to the execution of the security game with b = 0.
The challenger creates the correlation generation program by obfuscating PCG (see Figure 2.24). Also the
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Public-Key PCF with Trusted Setup

Setup(1λ)

1. k $← {0, 1}λ

2. K $← {0, 1}λ

3. Output CGP $← iO
(
1λ,PCG[k,K]

)
Gen(1λ, i)

1. Output (ski, pki)
$← PKE.Gen(1λ)

Eval(i,CGP, pk1, . . . , pkn, ski, x)

1. (c1, c2, . . . , cn)← CGP(pk1, . . . , pkn, x)

2. (Ri,mki)← PKE.Dec(ski, ci)

3. Output Ri.

PCG[k,K]

Hard-coded. Two puncturable PRF keys k and K.
Input. n public keys pk1, . . . , pkn and a nonce x ∈ {0, 1}l(λ).

1. (r, r1, r2, . . . , rn)← FK(pk1, . . . , pkn, x).

2. (s1, s2, . . . , sn)← F ′k(pk1, . . . , pkn)

3. ∀i ∈ [n] : mki ← Secret(1λ, i; si)

4. (R1, R2, . . . , Rn)← C(1λ,mk1, . . . ,mkn; r)

5. ∀i ∈ [n] : ci ← PKE.Enc
(
pki, (Ri,mki); ri

)
6. Output c1, c2, . . . , cn.

Figure 2.24: A Public-Key PCF with Trusted Setup
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P1
CG[k,K, (p̂ki, m̂ki)i∈[n]]

Hard-coded. The puncturable PRF keys k and K, the public keys (p̂ki)i∈[n] and the master secrets
(m̂ki)i∈[n].
Input. A nonce x ∈ {0, 1}l(λ) and n public keys pk1, pk2, . . . , pkn.

1. (r, r1, r2, . . . , rn)← FK(pk1, pk2, . . . , pkn, x).

2. If pki = p̂ki for every i ∈ [n], set mki ← m̂ki for every i ∈ [n].

3. Otherwise, perform the following operations

(a) (s1, s2, . . . , sn)← F ′k(pk1, pk2, . . . , pkn)

(b) ∀i ∈ [n] : mki ← Secret(1λ, i; si)

4. (R1, R2, . . . , Rn)← C(1λ,mk1,mk2, . . . ,mkn; r)

5. ∀i ∈ [n] : ci ← PKE.Enc
(
pki, (Ri,mki); ri

)
6. Output c1, c2, . . . , cn.

Figure 2.25: The Correlation Generation Program

keys of the honest parties are generated following the protocol. Those of the corrupted players are instead
derived using the randomness parametrising the game. Finally, the challenger replies to all the sampling
queries using Eval.

Hybrid 1. In this hybrid, we puncture the PRF key k in the list of public keys of the players. We
also store, in the correlation generation program CGP, the master secrets corresponding to the punctured
position and we use them to compute the output when the public keys of the parties are fed into it. In this
way, the input-output behaviour of CGP does not change with respect to the previous hybrid. Therefore,
indistinguishability follows from the security of obfuscation.

The formal steps performed by the challenger for the generation of CGP are now the following (the red
text highlights what changed since the last stage).

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. (ŝ1, ŝ2, . . . , ŝn)← F ′k(p̂k1, p̂k2, . . . , p̂kn)

3. ∀i ∈ [n] : m̂ki ← Secret(1λ, i; ŝi)

4. CGP
$← iO(1λ,P1

CG[k̂,K, (p̂ki, m̂ki)i∈[n]]) (see Figure 2.25)

Hybrid 2. In this hybrid, we change how we produce the master secrets (m̂ki)i∈[n]. Specifically, instead
of generating the randomness of Secret by means of F ′k, we sample it uniformly. By the security of the
puncturable PRF, this hybrid is indistinguishable from the previous one.

Formally, the challenger generates CGP as follows.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

3. CGP
$← iO(1λ,P1

CG[k̂,K, (p̂ki, m̂ki)i∈[n]]) (see Figure 2.25)
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P x̂,2CG [k,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂]

Hard-coded. The puncturable PRF keys k and K, the public keys (p̂ki)i∈[n] and the master secrets
(m̂ki)i∈[n] and (mk′i)i∈H , the set of honest parties H and the nonce x̂.
Input. A nonce x ∈ {0, 1}l(λ) and n public keys pk1, pk2, . . . , pkn.

1. (r, r1, r2, . . . , rn)← FK(pk1, pk2, . . . , pkn, x).

2. If pki = p̂ki for every i ∈ [n] and x ≥lex x̂, set mki ← m̂ki for every i ∈ [n].

3. If pki = p̂ki for every i ∈ [n] and x <lex x̂, set mkh ← mk′h for every h ∈ H and mki ← m̂ki for
every i ∈ C.

4. Otherwise, perform the following operations

(a) (s1, s2, . . . , sn)← F ′k(pk1, pk2, . . . , pkn)

(b) ∀i ∈ [n] : mki ← Secret(1λ, i; si)

5. (R1, R2, . . . , Rn)← C(1λ,mk1,mk2, . . . ,mkn; r)

6. ∀i ∈ [n] : ci ← PKE.Enc
(
pki, (Ri,mki); ri

)
7. Output c1, c2, . . . , cn.

Figure 2.26: The Correlation Generation Program

We now consider the nonce space {0, 1}l(λ) and we order it using the lexicographical order <lex. Let ε
denote the minimum and Ω the maximum. We apply the series of hybrids from 3 to 10 for every nonce x̂,
starting from ε and following the lexicographical order.

Hybrid 3.x̂. In this hybrid, the challenger samples additional master secrets (mk′h)h∈H for the honest
parties and hard-codes them into CGP along with x̂ and H. When the nonce x input in CGP is strictly
smaller than x̂ and the provided public keys coincide with the ones of the parties, the program generates
the samples (Ri)i∈[n] substituting m̂kh with mk′h for every h ∈ H. Furthermore, when the nonce x is strictly
smaller than x̂, the challenger replies to the correlation queries using RSample, providing it with (m̂ki)i∈[n].

Observe that for x̂ = ε, the input-output behaviour of CGP has not changed with respect to Hybrid 2.
Moreover, the challenger never uses RSample to reply to the correlation queries. If instead x̂ 6= ε, we will see
that the input-output behaviour of CGP has not changed with respect to the previous hybrid either and the
challenger replies to the correlation queries as it did before. We conclude that indistinguishability holds in
both cases due to the security of the obfuscator.

The formal steps used by the challenger for the generation of CGP are now the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

3. ∀h ∈ H : mk′h
$← Secret(1λ, h)

4. CGP
$← iO(1λ,P x̂,2CG [k̂,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂]) (see Figure 2.26)

The reply to (Correlation, x) when x <lex x̂ is instead computed as follows.

1. (ci)i∈[n] ← CGP(p̂k1, p̂k2, . . . , p̂kn, x)

2. ∀i ∈ C : (Ri,mki)← PKE.Dec(ŝki, ci)
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P x̂,3CG [k,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]

Hard-coded. The puncturable PRF keys k and K, the public keys (p̂ki)i∈[n] and the master secrets
(m̂ki)i∈[n] and (mk′i)i∈H , the set of honest parties H, the nonce x̂ and the ciphertexts (ĉi)i∈[n].
Input. A nonce x ∈ {0, 1}l(λ) and n public keys pk1, pk2, . . . , pkn.

1. If pki = p̂ki for every i ∈ [n] and x = x̂, output (ĉi)i∈[n].

2. (r, r1, r2, . . . , rn)← FK(pk1, pk2, . . . , pkn, x).

3. If pki = p̂ki for every i ∈ [n] and x ≥lex x̂, set mki ← m̂ki for every i ∈ [n].

4. If pki = p̂ki for every i ∈ [n] and x <lex x̂, set mkh ← mk′h for every h ∈ H and mki ← m̂ki for
every i ∈ C.

5. Otherwise, perform the following operations

(a) (s1, s2, . . . , sn)← F ′k(pk1, pk2, . . . , pkn)

(b) ∀i ∈ [n] : mki ← Secret(1λ, i; si)

6. (R1, R2, . . . , Rn)← C(1λ,mk1,mk2, . . . ,mkn; r)

7. ∀i ∈ [n] : ci ← PKE.Enc
(
pki, (Ri,mki); ri

)
8. Output c1, c2, . . . , cn.

Figure 2.27: The Correlation Generation Program

3. (Rh)h∈H
$← RSample

(
1λ, C, (Ri)i∈C , (m̂ki)i∈C , (m̂kh)h∈H

)
Hybrid 4.x̂. In this hybrid, we puncture the PRF key K in the tuple consisting of the public keys of

the parties and the nonce x̂, i.e. (p̂k1, p̂k2, . . . , p̂kn, x̂). Moreover, we program CGP to output the appropriate
ciphertexts when the punctured position is given as input. Since the input-output behaviour of the program
has not changed with respect to the previous hybrid, indistinguishability follows from the security of iO.

The formal procedure used by the challenger for the generation of CGP is now the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

3. ∀h ∈ H : mk′h
$← Secret(1λ, h)

4. K̂ ← Punct
(
K, (p̂k1, p̂k2, . . . , p̂kn, x̂)

)
5. (r̂, r̂1, r̂2, . . . , r̂n)← FK(p̂k1, p̂k2, . . . , p̂kn, x̂)

6. (R̂i)i∈[n] ← C(1λ, m̂k1, m̂k2, . . . , m̂kn; r̂)

7. ∀i ∈ [n] : ĉi ← PKE.Enc
(
p̂ki, (R̂i, m̂ki); r̂i

)
8. CGP

$← iO(1λ,P x̂,3CG [k̂, K̂, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]) (see Figure 2.27)

Hybrid 5.x̂. In this hybrid, we change how we generate the samples (R̂i)i∈[n] and encrypt them.
Specifically, instead of producing the randomness using the PRF FK , we sample it uniformly. Observe that
this hybrid and the previous one are indistinguishable by the security of the puncturable PRF F .
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The formal procedure used by the challenger to generate CGP becomes the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

3. ∀h ∈ H : mk′h
$← Secret(1λ, h)

4. K̂ ← Punct
(
K, (p̂k1, p̂k2, . . . , p̂kn, x̂)

)
5. (R̂i)i∈[n]

$← C(1λ, m̂k1, m̂k2, . . . , m̂kn)

6. ∀i ∈ [n] : ĉi
$← PKE.Enc

(
p̂ki, (R̂i, m̂ki)

)
7. CGP

$← iO(1λ,P x̂,3CG [k̂, K̂, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]) (see Figure 2.27)

Hybrid 6.x̂. In this hybrid, the challenger replies to the query (Correlation, x̂) directly sending the values
(R̂i)i∈[n] sampled by C during the generation of PCG. This hybrid is indistinguishable from the previous one
by the correctness of iO and PKE.

Hybrid 7.x̂. In this hybrid, we change how we produce the samples (R̂i)i∈[n]. Specifically, we first
generate (R′i)i∈[n] using the correlation function C and substituting mk′h to m̂kh for every h ∈ H. Then, we
obtain (R̂h)h∈H by feeding the original master secrets (m̂ki)i∈[n] and (R′i)i∈C into RSample. Finally, we set
R̂i to R′i for every i ∈ C. Observe that this hybrid is indistinguishable from the previous one by the reverse
samplability of (Secret, C).

The formal steps performed by the challenger for the generation of CGP become the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. K̂ ← Punct

(
K, (p̂k1, p̂k2, . . . , p̂kn, x̂)

)
3. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

4. ∀h ∈ H : mk′h
$← Secret(1λ, h)

5. ∀i ∈ C : mk′i ← m̂ki

6. (R′i)i∈[n]
$← C(1λ,mk′1,mk′2, . . . ,mk′n)

7. (R̂h)h∈H
$← RSample

(
1λ, C, (R′i)i∈C , (m̂ki)i∈C , (m̂kh)h∈H

)
8. ∀i ∈ C : R̂i ← R′i

9. ∀i ∈ [n] : ĉi
$← PKE.Enc

(
p̂ki, (R̂i, m̂ki)

)
10. CGP

$← iO(1λ,P x̂,3CG [k̂, K̂, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]) (see Figure 2.27)

Hybrid 8.x̂. In this stage, instead of hard-coding into CGP the encryption of (R̂h, m̂kh), for every h ∈ H,
we store the encryption of (R′h,mk′h). The challenger, however, replies to the query (Correlation, x̂) by feeding
the actual samples of the corrupted parties and the original master secrets (m̂ki)i∈[n] into RSample. Observe
that the challenger does not need to know the secret-keys of the honest parties to reply to the queries
(Correlation, x) with x 6= x̂. The knowledge of the keys K and k permits indeed to recompute the samples
(Ri)i∈[n]. This fact allows us to reduce the indistinguishability between Hybrid 7 and 8 to the IND-CPA
security of PKE.

The formal steps performed by the challenger for the generation of CGP become the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
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2. K̂ ← Punct
(
K, (p̂k1, p̂k2, . . . , p̂kn, x̂)

)
3. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

4. ∀h ∈ H : mk′h
$← Secret(1λ, h)

5. ∀i ∈ C : mk′i ← m̂ki

6. (R′i)i∈[n]
$← C(1λ,mk′1,mk′2, . . . ,mk′n)

7. ∀i ∈ [n] : ĉi
$← PKE.Enc

(
p̂ki, (R

′
i,mk′i)

)
8. CGP

$← iO(1λ,P x̂,3CG [k̂, K̂, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]) (see Figure 2.27)

Furthermore, the response to (Correlation, x̂) is now computed as follows.

1. (ci)i∈[n] ← CGP(p̂k1, p̂k2, . . . , p̂kn, x̂)

2. ∀i ∈ C : (Ri,mki)← PKE.Dec(ŝki, ci)

3. (Rh)h∈H
$← RSample

(
1λ, C, (Ri)i∈C , (m̂ki)i∈C , (m̂kh)h∈H

)
Hybrid 9.x̂. In this hybrid, we change how we generate the samples (R′i)i∈[n] and we encrypt them.

Specifically, instead of sampling the randomness for C and PKE.Enc uniformly, we rely on the output of the
PRF FK when its nonce is the position where we had previously punctured. Indistinguishability from the
previous stage holds by the security of the puncturable PRF F .

The formal steps performed by the challenger for the generation of CGP become the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. K̂ ← Punct

(
K, (p̂k1, p̂k2, . . . , p̂kn, x̂)

)
3. (r̂, r̂1, r̂2, . . . , r̂n)← FK(p̂k1, p̂k2, . . . , p̂kn, x̂)

4. ∀i ∈ [n] : m̂ki
$← Secret(1λ, i)

5. ∀h ∈ H : mk′h
$← Secret(1λ, h)

6. ∀i ∈ C : mk′i ← m̂ki

7. (R′i)i∈[n] ← C(1λ,mk′1,mk′2, . . . ,mk′n; r̂)

8. ∀i ∈ [n] : ĉi ← PKE.Enc
(
p̂ki, (R

′
i,mk′i); r̂i

)
9. CGP

$← iO(1λ,P x̂,3CG [k̂, K̂, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂, (ĉi)i∈[n]]) (see Figure 2.27)

Hybrid 10.x̂. In this hybrid, we do not puncture K anymore and we remove (ĉi)i∈[n] from CGP. When
the public keys of the parties and the nonce x̂ are input into the program, we compute the output running
the same procedure as if the nonce was strictly smaller than x̂. Observe that the input-output behaviour of
the program is the same as in the previous hybrid, therefore indistinguishability follows from the security of
iO.

The formal procedure adopted by the challenger for the generation of CGP becomes the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. ∀i ∈ [n] : m̂ki

$← Secret(1λ, i)

3. ∀h ∈ H : mk′h
$← Secret(1λ, h)
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P x̂,4CG [k,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂]

Hard-coded. The puncturable PRF keys k and K, the public keys (p̂ki)i∈[n] and the master secrets
(m̂ki)i∈[n] and (mk′i)i∈H , the set of honest parties H and the nonce x̂.
Input. A nonce x ∈ {0, 1}l(λ) and n public keys pk1, pk2, . . . , pkn.

1. (r, r1, r2, . . . , rn)← FK(pk1, pk2, . . . , pkn, x).

2. If pki = p̂ki for every i ∈ [n] and x >lex x̂, set mki ← m̂ki for every i ∈ [n].

3. If pki = p̂ki for every i ∈ [n] and x ≤lex x̂, set mkh ← mk′h for every h ∈ H and mki ← m̂ki for
every i ∈ C.

4. Otherwise, perform the following operations

(a) (s1, s2, . . . , sn)← F ′k(pk1, pk2, . . . , pkn)

(b) ∀i ∈ [n] : mki ← Secret(1λ, i; si)

5. (R1, R2, . . . , Rn)← C(1λ,mk1,mk2, . . . ,mkn; r)

6. ∀i ∈ [n] : ci ← PKE.Enc
(
pki, (Ri,mki); ri

)
7. Output c1, c2, . . . , cn.

Figure 2.28: The Correlation Generation Program

4. CGP
$← iO(1λ,P x̂,4CG [k̂,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H, x̂]) (see Figure 2.28)

The next step of the proof is to repeat Hybrid 3-10 for the following value of the nonce x̂. When the
procedure has been applied to all the elements of the nonce space, we move to Hybrid 11.

Hybrid 11. In this stage, we change how we generate the master secrets (mk′h)h∈H and (m̂ki)i∈C .
Specifically, instead of sampling the randomness fed into Secret uniformly, we rely on the output of the
PRF F ′k when its nonce is the position where we had previously punctured. Observe that this hybrid is
indistinguishable from the previous one by the security of the puncturable PRF F ′.

The formal procedure used by the challenger for the generation of CGP becomes the following.

1. k̂ ← Punct′
(
k, (p̂k1, p̂k2, . . . , p̂kn)

)
2. (ŝ1, ŝ2, . . . , ŝn)← F ′k(p̂k1, p̂k2, . . . , p̂kn)

3. ∀i ∈ [n] : mk′i
$← Secret(1λ, i; ŝi)

4. ∀i ∈ C : m̂ki ← mk′i

5. ∀h ∈ H : m̂kh
$← Secret(1λ, h)

6. CGP
$← iO(1λ,PΩ,4

CG [k̂,K, (p̂ki, m̂ki)i∈[n], (mk′h)h∈H , H,Ω]) (see Figure 2.28)

Hybrid 12. This is the final stage and corresponds to the ideal world. In this hybrid, we do not puncture
k anymore and we generate CGP by obfuscating the original program PCG (see Figure 2.24). Observe that
the input-output behaviour of CGP is the same as in Hybrid 11. Indeed, there is no x >lex x̂ because x̂ has
reached the maximum. Indistinguishability holds by the security of iO.

Also notice that the challenger replies to every query (Correlation, x) using the following procedure.
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1. (ci)i∈[n] ← CGP(p̂k1, p̂k2, . . . , p̂kn, x)

2. ∀i ∈ C : (Ri,mki)← PKE.Dec(ŝki, ci)

3. (Rh)h∈H
$← RSample

(
1λ, C, (Ri)i∈C , (m̂ki)i∈C , (m̂kh)h∈H

)
Furthermore, observe that the master secrets (m̂kh)h∈H are sampled at random using Secret and they are
independent of the public keys and CGP. Finally, we formalise the operations of the extractor.

Extract(C,CGP, ρ1, . . . , ρn)

1. ∀i ∈ [n] : (ŝki, p̂ki)← PKE.Gen(1λ; ρi)

2. (ci)i∈[n] ← CGP(p̂k1, p̂k2, . . . , p̂kn, ε)

3. ∀i ∈ C : (Ri,mki)← PKE.Dec(ŝki, ci)

4. Output (mki)i∈C .

Observe that in every hybrid the size of CGP is polynomial in the length l(λ) of the nonces. Furthermore,
the size of the keys is always independent of the size of the nonce space.

2.6.4 Our Public-Key PCFs
As mentioned in the previous section, once we obtain a semi-maliciously secure public-key PCF with trusted
setup, we can easily remove the CRS using a distributed sampler. We therefore obtain a public-key PCF with
security against semi-malicious adversaries. If the size of the CRS and the keys of the initial construction is
logarithmic in the size of the nonce space, the key length after removing the setup is still polynomial in l(λ).

Theorem 2.6.8 (Semi-Maliciously Secure Public Key PCFs). Let (Secret, C) be an n-party, reverse samplable
correlation function with master secrets. Suppose that pkPCFS = (Setup,Gen,Eval) is a semi-maliciously se-
cure public-key PCF with trusted setup for (Secret, C). Moreover, assume that there exists a semi-maliciously
secure n-party distributed sampler for pkPCFS.Setup. Then, public-key PCFs for (Secret, C) with semi-
malicious security exist.

We will not prove Theorem 2.6.8 formally. Security follows from the fact that distributed samplers
implement the functionality that samples directly from the underlying distribution. From this point of view,
it is fundamental that the randomness input into Setup is not given as input to the extractor of the public-key
PCF pkPCFS.

Active security in the random oracle model.

If we rely on a random oracle, it is easy to upgrade a semi-maliciously secure public-key PCF to active
security. We can use an anti-rusher (see Section 2.5.1) to deal with rushing and malformed messages. If the
key size of the semi-malicious construction is polynomial in l(λ), after compiling with the anti-rusher, the key
length is still poly(l). The technique described above allows us to deduce the security of our solution from
the semi-malicious security of the initial public-key PCF. The result is formalised by the following theorem.
Again, we will not provide a formal proof.

Theorem 2.6.9 (Actively Secure Public Key PCFs in the Random Oracle Model). Let (Secret, C) be an
n-party, reverse samplable correlation function with master secret. Assume that pkPCF = (Gen,Eval) is
a semi-maliciously secure public-key PCFs for (Secret, C) and suppose there exists an anti-rusher for the
associated protocol. Then, actively secure public-key PCFs for (Secret, C) exist.
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Active security from sub-exponentially secure primitives.

So far, all our constructions rely on polynomially secure primitives. However, we often work in the random
oracle model. We now show that it is possible to build actively secure public-key PCFs in the URS model
assuming the existence of sub-exponentially secure primitives. Furthermore, these constructions come with
no restrictions on the size of the nonce space.

Our solution is obtained by assembling a sub-exponentially and semimaliciously secure public-key PCF
with trusted setup with a sub-exponentially and semi-maliciously secure distributed sampler. We add
witness-extractable NIZKs proving the well-formedness of the messages. Like for our semi-malicious con-
struction, if the size of the CRS and the keys of the public-key PCF with trusted setup is polynomial in the
nonce length l(λ), after composing with the DS, the key size remains poly(l).
Theorem 2.6.10 (Actively Secure Public Key PCFs from Subexponentially Secure Primitives). Let (Secret, C)
be an n-party, reverse samplable correlation function with master secret. Suppose that pkPCFS =
(Setup,Gen,Eval) is a sub-exponentially and semi-maliciously secure public-key PCF with trusted setup
for (Secret, C). Assume that there exists a sub-exponentially and semi-maliciously secure n-party distributed
sampler for pkPCFS.Setup. If there exist simulation-extractable NIZKs with URS proving the well-formedness
of the sampler shares and the PCF public keys, there exists an actively secure public-key PCF for (Secret, C)
in the URS model.

Proof. Let pkPCFS = (Setup,Gen,Eval) be the sub-exponentially and semi-maliciously secure public key
PCF with trusted setup for (Secret, C). Assume that DS = (Gen,Sample) is a sub-exponentially and semi-
maliciously secure distributed sampler for pkPCFS.Setup. Moreover, suppose that the algorithms DS.Gen
and pkPCFS.Gen need L(λ) and L′(λ) bits of randomness for their execution respectively. We rely on
a PRG PRG mapping a λ-bit seed into a pseudorandom string of L(λ) + L′(λ) bits. We assume that
the output of G is naturally split into two blocks of length L(λ) and L′(λ) bits respectively. Finally, let
NIZK′ = (Gen,Prove,Verify) be a simulation-extractable NIZK proving the well-formedness of sampler shares
and PCF public keys. Specifically, in the relation corresponding to NIZK′, the statement consists of a tuple
(U, pk, i), whereas the witness is a pair (s, sk) such that

U = DS.Gen(1λ, i; r), (sk, pk) = pkPCFS.Gen(1λ, i; r′), (r, r′) = PRG(s).

Our actively secure public key PCF Πexp-C is described in Figure 2.29. We now prove that no PPT
adversary is able to distinguish between Πexp-C and the composition of FRSample

C with a PPT simulator we
are going to present. The proof proceeds by a series of 6 indistinguishable hybrids (some of them repeated
multiple times) going from Πexp-C (Hybrid 0) to the ideal world (Hybrid 6).

Hybrid 0. This hybrid coincides with the real world. The simulator runs the protocol Πexp-C on behalf
of the honest parties. Specifically, it starts its execution producing the URS for the NIZK proofs, it generates
the sampler shares and the keys of the honest parties, proves their well-formedness and sends everything
except the private keys to the adversary. Moreover, the simulator replies to the correlation queries using
pkPCFS.Eval as in Πexp-C .

Hybrid 1. In this hybrid, we change how we generate the URS and the NIZK proofs of the honest
parties. Specifically, we substitute them with the output of the simulators NIZK′.Sim1 and NIZK′.Sim2.
Indistinguishability between Hybrid 0 and 1 follows from the multi-theorem zero-knowledge of NIZK′. For-
mally, the steps performed by the simulator for the generation of the messages of the honest parties are the
following (the red text indicates what changed since the last hybrid).

1. ∀h ∈ H : (rh, r
′
h)← PRG(sh)

2. ∀h ∈ H : Uh
$← DS.Gen(1λ, h)

3. ∀h ∈ H : (skh, pkh)← pkPCFS.Gen(1λ, h; r′h)

4. (urs, τ)
$← NIZK′.Sim1(1λ)
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Πexp-C

URS. The protocol needs a URS urs
$← NIZK′.Gen(1λ) for the NIZK proofs.

Initialisation. Each party Pi performs the following steps.

1. si $← {0, 1}λ

2. (ri, r
′
i)← PRG(si)

3. Ui ← DS.Gen(1λ, i; ri)

4. (ski, pki)← pkPCFS.Gen(1λ, i; r′i)

5. πi $← NIZK′.Prove
(
1λ, urs, (Ui, pki, i), (si, ski)

)
6. Broadcast (Ui, pki, πi) and wait for a similar message from every other party.

7. If there exists j ∈ [n] such that NIZK′.Verify
(
urs, πj , (Uj , pkj , j)

)
= 0 abort.

8. S ← DS.Sample(U1, U2, . . . , Un)

Correlation. On input a nonce x ∈ {0, 1}l(λ), each party Pi outputs Ri ←
pkPCFS.Eval

(
i, S, (pkj)j∈[n], ski, x

)
.

Figure 2.29: Actively Secure Public Key PCF based on Sub-Exponentially Secure Primitives

5. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Uh, pkh, h)

)
Hybrid 2. In this hybrid, we change how we generate the randomness (rh, r

′
h)h∈H of the honest parties.

Specifically, instead of expanding the seed sh, we sample rh and r′h uniformly in {0, 1}L(λ) and {0, 1}L′(λ)

respectively. Observe that this hybrid is indistinguishable from the previous one by the PRG security of
PRG.

Next, we repeat the hybrids from 3 to 5 for every possible choice of the seeds of the corrupted parties
ρ̂ := (ŝi)i∈C . We follow the lexicographical order starting from the minimum.

Hybrid 3.ρ̂. In this hybrid, we change how we generate the sampler shares of the honest parties. Let
(r̂i, r̂

′
i) be PRG(ŝi) for every i ∈ C. We rely on DS.Sim, providing it with the randomness (r̂i)i∈C and an

element Ŝ produced by pkPCFS.Setup.
We also change the way we reply to the correlation queries. At the beginning of its execution, the simulator

samples a random mk′h for every h ∈ H. When it receives the messages of the corrupted parties, the simulator
extracts the witnesses from the NIZK proofs, obtaining the seeds ρ = (si)i∈C and the corresponding secret
keys. The operation can be performed due to simulation-extractability. Furthermore, the simulator derives
the master secrets (mki)i∈C of the corrupt parties by computing (ri, r

′
i) ← PRG(si) for every i ∈ C and

running pkPCFS.Extract on (r′i)i∈[n] and S. The reply to the correlation queries is then computed as follows.

• If ρ = ρ̂, the simulator substitutes the output of DS.Sample with Ŝ in pkPCFS.Eval. It answers with
the results.

• If ρ >lex ρ̂, the simulator replies as in the real protocol.

• If ρ <lex ρ̂, the simulator extracts the outputs of the corrupted parties by relying on their private keys,
feeds the obtained values into RSample along with (mki)i∈C and (mk′h)h∈H and, at the end, answers
with the results.

Observe that this hybrid is indistinguishable from the previous one by the semi-malicious security of
DS. Notice that when ρ̂ is minimum, the simulator never relies on RSample. The formal steps used by the
simulator to generate (Uh)h∈H become the following.
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1. ∀i ∈ C : (r̂i, r̂
′
i)← PRG(ŝi)

2. Ŝ $← pkPCFS.Setup(1λ)

3. (Uh)h∈H
$← DS.Sim

(
1λ, C, Ŝ, (r̂i)i∈C

)
The reply to (Correlation, x) is instead computed as follows.

1. S ← DS.Sample(U1, U2, . . . , Un)

2. ∀i ∈ C : (si, ski)← NIZK′.Extract
(
urs, τ, (Ui, pki, i), πi

)
3. ∀i ∈ C : (ri, r

′
i)← PRG(si)

4. (mki)i∈C ← pkPCFS.Extract(C, S, r′1, r
′
2, . . . , r

′
n)

5. ρ← (si)i∈C

6. If ρ = ρ̂, compute Rh ← pkPCFS.Eval
(
h, Ŝ, (pki)i∈[n], skh, x

)
∀h ∈ H.

7. If ρ >lex ρ̂, compute Rh ← pkPCFS.Eval
(
h, S, (pki)i∈[n], skh, x

)
∀h ∈ H.

8. If ρ <lex ρ̂, compute

(a) ∀i ∈ C : Ri ← pkPCFS.Eval
(
i, S, (pkj)j∈[n], ski, x

)
(b) (Rh)h∈H

$← RSample
(
1λ, C, (Ri)i∈C , (mki)i∈C , (mk′h)h∈H

)
Hybrid 4.ρ̂. In this hybrid, we change how we generate the outputs of the honest parties when the seeds

of the corrupted players coincide with ρ̂. Specifically, we now reverse sample them. We can indeed retrieve
the samples addressed to the corrupted parties using their private keys. The latter can be extracted from
the corresponding NIZK proofs along with the seeds of the corrupted players. Using pkPCFS.Extract, it is
also possible to derive the master secrets (mki)i∈C .

Observe that this hybrid is indistinguishable from the previous one by the semi-malicious security of
pkPCFS. As a matter of fact, if the randomness ρ chosen by the adversary is different from ρ̂, the two stages
are perfectly identical. If instead ρ = ρ̂, we can reduce distinguishability between Hybrid 2.ρ̂ and 3.ρ̂ to the
security game GC,(r̂

′
i)i∈C

SetupSec (λ).
When ρ = ρ̂, the simulator replies to (Correlation, x) using the following procedure.

1. ∀i ∈ C : (si, ski)← NIZK′.Extract
(
urs, τ, (Ui, pki, i), πi

)
2. ∀i ∈ C : (ri, r

′
i)← PRG(si)

3. (mki)i∈C ← pkPCFS.Extract(C, Ŝ, r′1, r
′
2, . . . , r

′
n)

4. ∀i ∈ C : Ri ← pkPCFS.Eval
(
i, Ŝ, (pkj)j∈[n], ski, x

)
5. (Rh)h∈H

$← RSample
(
1λ, C, (Ri)i∈C , (mki)i∈C , (mk′h)h∈H

)
Hybrid 5.ρ̂. In this hybrid, we revert to the original procedure for the generation of the sampler shares

of the honest parties. Specifically, we do not rely anymore on DS.Sim, but we use DS.Gen. Observe that this
hybrid is indistinguishable from the previous one by the semi-malicious security of DS.

If ρ = ρ̂, the procedure used by the simulator to reply to (Correlation, x) becomes the following.

1. S ← DS.Sample(U1, U2, . . . , Un)

2. ∀i ∈ C : (si, ski)← NIZK′.Extract
(
urs, τ, (Ui, pki, i), πi

)
3. ∀i ∈ C : (ri, r

′
i)← PRG(si)
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Sexp-C
Initialisation.

1. ∀h ∈ H : r′h
$← {0, 1}L′(λ)

2. ∀h ∈ H : Uh
$← DS.Gen(1λ, h)

3. ∀h ∈ H : (skh, pkh)← pkPCFS.Gen(1λ, h; r′h)

4. (urs, τ)
$← NIZK′.Sim1(1λ)

5. ∀h ∈ H : πh
$← NIZK′.Sim2

(
urs, τ, (Uh, pkh, h)

)
6. Send (Uh, pkh, πh)h∈H to the adversary and wait for (Ui, pki, πi)i∈C as a reply.

7. If there exists i ∈ C such that NIZK′.Verify
(
urs, πi, (Ui, pki, i)

)
= 0, send Abort to the functionality.

8. S ← DS.Sample(U1, U2, . . . , Un)

9. ∀i ∈ C : (si, ski)← NIZK′.Extract
(
urs, τ, (Ui, pki, i), πi

)
10. ∀i ∈ C : (ri, r

′
i)← PRG(si)

11. (mki)i∈C ← pkPCFS.Extract(C, S, r′1, r
′
2, . . . , r

′
n)

12. Send (mki)i∈C to the functionality.

Correlation. On input (Correlation, x) where x ∈ {0, 1}l(λ), the simulator sends to the functionality
Ri ← pkPCFS.Eval

(
i, S, (pkj)j∈[n], ski, x

)
for every i ∈ C.

Figure 2.30: Simulator for Πexp-C

4. (mki)i∈C ← pkPCFS.Extract(C, S, r′1, r
′
2, . . . , r

′
n)

5. ∀i ∈ C : Ri ← pkPCFS.Eval
(
i, S, (pkj)j∈[n], ski, x

)
6. (Rh)h∈H

$← RSample
(
1λ, C, (Ri)i∈C , (mki)i∈C , (mk′h)h∈H

)
The next step is to repeat Hybrid 3-5 for the next value ρ̂ of the seeds of the corrupted parties. If ρ̂ has

reached the maximum, we move to Hybrid 6.
Hybrid 6. This hybrid corresponds to the ideal world and summarises what we have achieved so far. In

this final stage, the simulator selects the sampler shares and the keys of the honest parties as in the original
protocol, using however true randomness instead of expanding PRG seeds. The URS and the NIZK proofs
are generated by relying on the simulators NIZK′.Sim1 and NIZK′.Sim2 as in Hybrid 1.

When the simulator receives the messages of the corrupted parties from the adversary, it extracts their
seeds and private keys from the zero-knowledge proofs using NIZK′.Extract. At that point, it has all the neces-
sary information to retrieve the master secrets (mki)i∈C of the corrupted players by means of pkPCFS.Extract.
The values are sent to FRSample

C .
Upon receiving any query (Correlation, x), the simulator is also able to compute the outputs of the cor-

rupted parties as it knows their private keys. So it is just sufficient to forward the results to the functionality.
The latter will take care of the generation and distribution of the samples of the honest players using RSample.
The formal description of the simulator is available is Figure 2.30.
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F Ideal
C

Initialisation. On input Init from every honest party and the adversary, the functionality activates
and enters the querying phase.
Querying phase.

• On input (Query, id, C) from the adversary where C is a (n, `, r, t)-correlation that has not been
queried previously, the functionality samples (Ri)i∈[n]

$← C(1λ), sends (Ri)i∈C to the adversary
and stores the tuple

(
id, C, (ri)i∈[n]

)
.

• On input (Choice, îd) from the adversary, the functionality stores îd, ends the querying phase and
begins the correlation phase. If îd = Abort, the functionality outputs ⊥ to every honest party and
halts.

Correlation phase. On input a (n, `, r, t)-correlation C from party Pi, where a tuple
(
îd, C, (Ri)i∈[n]

)
has not been stored previously, the functionality samples (R1, R2, . . . , Rn)

$← C(1λ), stores(
îd, C, (Ri)i∈[n]

)
and outputs Ri to Pi. If

(
îd, C, (Ri)i∈[n]

)
has been previously stored (in either the

querying or correlation phase), the functionality outputs Ri to Pi.

Figure 2.31: The Functionality for Ideal Public Key PCFs with Active Security

2.7 Ideal Public Key PCFs and Distributed Universal Samplers
We now inspect the feasibility of ideal public key PCFs. The term is used to denote one-round constructions
implementing the functionality that directly samples the outputs from adaptively chosen correlations and
distributes them to the parties. In contrast with the other PCFs we described, ideal public key PCFs are
not tailored to any specific correlation function; instead, the correlation function can be chosen on the fly.
However, they can exist only in the random oracle model.

Defining ideal public key PCFs. We deal with generic correlations C without master secrets. C takes no
inputs, and generates n correlated outputs. It does not need to satisfy any specific properties (in particular
it is not required to be reverse samplable). Since the correlations supported by an ideal public key PCF are
restricted to those whose description is polynomially bounded, we define the class of (n, `, r, t)-correlations
as the set of functions mapping r bits of randomness into n t-bit outputs and having an `-bit description as
a circuit.

The syntax of ideal public key PCFs is derived from that of their non-ideal counterparts (see Defini-
tion 2.6.2). The only difference is that the evaluation algorithm Eval takes as input the description of an
(n, `, r, t)-correlation instead of a nonce.
Definition 2.7.1 (Ideal Public-Key PCF). Let `(λ), r(λ) and t(λ) be polynomials. An ideal public-key PCF
for (n, `, r, t)-correlations is a pair of PPT algorithms (Gen,Eval) with the following syntax:

• Gen takes as input the security parameter 1λ and the index of a party i ∈ [n], and outputs the PCF
key pair (ski, pki) of the i-th party.

• Eval takes as input an index i ∈ [n], n PCF public keys, the i-th PCF private key ski and the description
of an (n, `, r, t)-correlation C. It outputs a value Ri corresponding to the i-th output of C.

Definition 2.7.2 (Ideal Public Key PCF with Active Security). An ideal public key PCF (Gen,Eval) for
(n, `, r, t)-correlations satisfies active security if the corresponding one-round protocol ΠC implements the
functionality F Ideal

C (see Figure 2.31) against a static and active adversary corrupting up to n− 1 parties.
Like in the definition of the actively secure distributed sampler (see Definition 2.3.3), the adversary is

allowed to request different samples stored under different labels. Afterwards, the adversary can specify a

106



label of its choice, forcing the functionality to output the associated values to the honest players. We must
allow this kind of influence in order to model rushing; an active adversary can always wait for the messages
of the honest parties and adaptively choose the reply of the corrupted players. She is allowed to rerun the
procedure as many time as it desire, repeatedly re-generating the messages of the corrupted parties and
obtaining different collections of samples. The adversary can then use the messages that led to the most
favourable results.

We will build our ideal public key PCFs upon a new primitive called a distributed universal sampler. We
will present and analyse it in the following subsection.

2.7.1 Distributed Universal Samplers
A distributed universal sampler (DUS) generalises the concept of distributed sampler. Recall that a dis-
tributed sampler is tailored to output a single sample from some fixed distribution D. In some applications,
for instance when we need to sample from multiple distributions, chosen on-the-fly, this may be too restric-
tive.

What we want instead is analogous to a universal sampler (US) [HJK+16], where a trusted dealer first
generates and publishes a sampler U . Later, the parties can use U to sample from arbitrary distributions,
learning no additional information about the randomness used to generate the output. With a distributed
universal sampler, we aim to remove the trusted dealer, sampling from generic distributions in a distributed
way and with only one round of interaction.

Formally, (distributed) universal samplers do not support completely generic distributions, but are instead
restricted to those whose descriptions are polynomially-bounded. We therefore define the class of (`, r, t)-
distributions as the set of all distributions converting r bits of randomness into a t-bit output and having
an `-bit description as a circuit.

The syntax of a DUS is obtained by augmenting the Sample algorithm of a DS with an additional input,
namely the description of the distribution from which to sample the output.
Definition 2.7.3 (Distributed Universal Sampler). Let `(λ), r(λ) and t(λ) be polynomials. An n-party
distributed universal sampler for (`, r, t)-distributions consists of a pair of PPT algorithms (Gen,Sample)
with the following syntax.

1. Gen is a probabilistic algorithm taking as input the security parameter 1λ and a party index i ∈ [n] and
outputting a sampler share Ui for party i. Suppose that the procedure needs L(λ) bits of randomness.

2. Sample is a deterministic algorithm taking as input n shares of the sampler U1, U2, . . . , Un and the
description of an (`, r, t)-distribution D, outputting a sample R.

Similarly to a DS, any distributed universal sampler DUS = (Gen,Sample) naturally corresponds to a
one-round protocol ΠDUS, where each party first broadcasts a message output by Gen, and then, for every
required sample, runs Sample on input all the parties’ messages and the desired distribution D.

As in the setting of universal samplers [HJK+16], we can classify a DUS in two main ways: security
for distributions chosen selectively by the adversary ahead of time, and security for adversaries who can
adaptively choose distributions on-the-fly. We refer to the first class as one-time security, and the latter as
reusable security.

One-Time Distributed Universal Samplers

While reusable distributed universal samplers need a random oracle independently of the power of the
adversary, it is possible to build one-time DUSs with semi-malicious security in the plain model. Indeed, we
now consider a one-time, selective security definition, where the sampler may only be queried once, and on
a distribution D that is fixed ahead of time. We formalise the idea.
Definition 2.7.4 (Distributed Universal Sampler with One-Time Semi-Malicious Security). A distributed
universal sampler (Gen,Sample) satisfies one-time semi-malicious security if there exists a PPT simulator
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Sim such that, for every set of corrupted parties C ( [n], corresponding randomness (ρi)i∈C and (`, r, t)-
distribution D, the following two distributions are computationally indistinguishable.(Ui)i∈[n], (ρi)i∈C

R

∣∣∣∣∣∣∣
∀i ∈ H : ρi

$← {0, 1}L(λ)

∀i ∈ [n] : Ui ← Gen
(
1λ, i; ρi

)
R← Sample(U1, U2, . . . , Un,D)

{
(Ui)i∈[n], (ρi)i∈C

R

∣∣∣∣∣ R
$← D

(Ui)i∈[n]
$← Sim

(
1λ, C,D, R, (ρi)i∈C

)}

Just as with a DS, we can adapt the above definition to passive security by sampling the randomness of
the corrupted parties inside the game in the real world and by generating it using the simulator in the ideal
world. In a definition for active security, we must also account for a rushing adversary, who may adaptively
choose the sampler shares of the corrupted parties after seeing those of the honest parties. In other words, in
the ideal world, the adversary would be allowed to select the final output R from a list of samples generated
by the functionality. We do not consider this notion here, since our actively secure construction actually
satisfies the stronger notion of a reusable DUS (see Section 2.7.1).

Universal samplers. We will build our one-time DUSs starting from their non-distributed ver-
sion [HJK+16]. The corresponding definition is available in Section 2.2.6. A one-time universal sampler
is a pair of PPT algorithms (US.Setup,US.Sample) with the same syntax as the reusable case. The main
difference is that the random oracle is no longer needed. Security is defined by stating that no PPT adversary
can distinguish the real samplers from fake ones specifically programmed to output an ideal sample R when
used in conjunction with a distribution D selected ahead of time. The property is required to hold for every
(`, r, t)-distribution D. In other words, the main novelty is that we now program the sampler for one spe-
cific distribution selected ahead of time, whereas in the reusable case, we did that for multiple distributions
adaptively chosen by the adversary.

Construction of a one-time DUS. Given distributed samplers and a one-time universal sampler, it is
quite straightforward to build a semi-maliciously secure one-time DUS. We can simply substitute the trusted
dealer generating the one-time sampler U with a semi-maliciously secure DS for US.Setup. Security follows
from the programmability of one-time universal samplers and the fact that, by definition, a DS implements
the functionality that directly samples from the underlying distribution. This idea is formalised in the
following theorem. We will not, however, provide a formal proof.
Theorem 2.7.5 (One-Time Distributed Universal Samplers). Suppose that (US.Setup,US.Sample) is a one-
time universal sampler for (`, r, t)-distributions. Assume that (DS.Gen,DS.Sample) is a semi-maliciously
secure distributed sampler for US.Setup. Then, there exists a one-time distributed universal samplers for
(`, r, t)-distributions with semi-malicious security.

Reusable Distributed Universal Samplers.

In a reusable DUS, the shares output by Gen can be reused to obtain an arbitrary number of samples, from
distributions that are chosen adaptively by the adversary. Note that, as is the case for (non-distributed)
universal samplers [HJK+16], this notion is impossible to realize in the standard model, and our construction
will use a random oracle.

We model security by requiring that the sampler can be used to obtain a one-round protocol that securely
realizes an ideal sampling functionality, which can be queried adaptively.
Definition 2.7.6 (Reusable Distributed Universal Sampler). A distributed universal sampler DUS =
(Gen,Sample) for (`, r, t)-distributions satisfies reusable active security if the corresponding one-round pro-
tocol ΠDUS implements the functionality FDUS (see Figure 2.32) against a static and active PPT adversary.
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FDUS

Initialisation. On input Init from every honest party and the adversary, the functionality activates
and enters the querying phase.
Querying phase.

• On input (Query, id,D) from the adversary, where D is an (`, r, t)-distribution and the pair (id,D)

has not been queried previously, the functionality samples R $← D, sends R to the adversary and
stores (id,D, R).

• On input (Choice, îd) from the adversary, the functionality stores îd, ends the querying phase and
begins the sampling phase. If îd = Abort, the functionality outputs ⊥ to every honest party and
halts.

Sampling phase. On input an (`, r, t)-distribution D from party Pi, where a tuple (îd,D, R) has
not been stored previously, the functionality samples R $← D, stores (îd,D, R) and outputs R to Pi.
If (îd,D, R) has been previously stored (in either the querying or sampling phase), the functionality
outputs R to Pi.

Figure 2.32: The Reusable Distributed Universal Sampler Functionality for Active Security

Adaptively secure universal samplers. We construct a reusable DUS starting from an adaptively
secure universal sampler. We briefly recall the corresponding definition [HJK+16], the formal version of
which is available in Section 2.2.6. An adaptively secure universal sampler is a pair of PPT algorithms
(US.Setup,US.Sample), the first one of which is used by a trusted dealer to generate a sampler U . By
feeding U and (`, r, t)-distributions D to the second algorithm (and using the random oracle), anyone can
obtain a sample R. Importantly, US.Sample is deterministic, so a set of parties can use U to generate public
samples non-interactively. Security requires that no PPT adversary A can distinguish the real sampler U
and the original oracle responses from fake ones specifically programmed to output ideal samples from the
(`, r, t)-distributions chosen by A on-the-fly. Hofheinz et al. [HJK+16] present an adaptively secure universal
sampler for (`, r, t)-distributions whose size is poly(`, r, t).

Our reusable distributed universal sampler. It turns out that designing a reusable DUS is rather
straightforward. It suffices to generate the adaptively secure sampler U using a DS for US.Setup. Observe
that if we use the construction of [HJK+16], the size of the sampler shares is poly(`, r, t). Security follows
from the adaptive programmability of US and the fact that the DS implements the functionality that directly
samples from the associated distribution. We formalise this in the theorem below, again, given without proof.
Theorem 2.7.7 (Reusable Distributed Universal Samplers in the Random Oracle Model). Suppose that
(US.Setup,US.Sample) is an adaptively secure universal sampler for (`, r, t)-distributions using a random
oracle H. Assume that there exists an actively secure distributed sampler for US.Setup. Then, there exists
a reusable distributed universal sampler for (`, r, t)-distributions with active security.

2.7.2 Building Ideal Public Key PCFs upon Distributed Universal Samplers
If reusable distributed universal samplers exist, constructing ideal public key PCFs becomes easy. We can use
the reusable DUS to produce correlated samples (Rj)j∈[n] and then protect their privacy using a PKE scheme.
Specifically, each party Pi can generate a PKE pair (ski, pki) and broadcast the public counterpart along
with a reusable DUS share. In order to produce and deal correlated outputs (Rj)j∈[n] from a correlation
function C, it is sufficient to query the DUS with the distribution that samples from C and outputs the
encryption of Rj under pkj for every j ∈ [n]. In this way, only the party j can retrieve the value of the j-th
sample Rj . If we rely on the DUS built on top of the US of Hofheinz et al. [HJK+16], the key size of our
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public key PCF is poly(`, r, n · t).

Security. Proving the security of this construction is an easy task. We rely on UC composability, and
substitute the DUS with the corresponding functionality FDUS (see Figure 2.32). Then, by the IND-CPA
security of the PKE scheme, we can substitute the ciphertexts addressed to the honest parties in the FDUS

responses with the encryption of random values. We substitute the ciphertexts of the corrupt parties with
encryptions of the elements provided by the functionality F Ideal

C (see Figure 2.31). Our result is formalised
in the following theorem; we do not provide a formal proof.
Theorem 2.7.8 (Ideal Public Key PCFs in the Random Oracle Model). If there exists an IND-CPA PKE
scheme and an n-party reusable distributed universal sampler with active security, there exists an actively
secure ideal public key PCFs for (n, `, r, t)-correlations.
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Chapter 3

On the (Im)Possibility of Distributed
Samplers:Lower Bounds and
Party-Dynamic Constructions
Damiano Abram, Maciej Obremski, Peter Scholl

Abstracts. Distributed samplers, introduced by Abram, Scholl and Yakoubov (Euro-
crypt ’22), are a one-round, multi-party protocol for securely sampling from any distribution.
We give new lower and upper bounds for constructing distributed samplers in challenging scenar-
ios. First, we consider the feasibility of distributed samplers with a malicious adversary in the
standard model; the only previous construction in this setting relies on a random oracle. We show
that for any UC-secure construction in the standard model, even with a CRS, the output of the
sampling protocol must have low entropy. This essentially implies that this type of construction
is useless in applications.

Secondly, we study the question of building distributed samplers in the party-dynamic setting,
where parties can join in an ad-hoc manner, and the total number of parties is unbounded.
Here, we obtain positive results. First, we build a special type of unbounded universal sampler,
which after a trusted setup, allows sampling from any distributed with unbounded size. Our
construction is in the shared randomness model, where the parties have access to a shared random
string, and uses indistinguishability obfuscation and somewhere statistically binding hashing.
Next, using our unbounded universal sampler, we construct distributed universal samplers in the
party-dynamic setting. Our first construction satisfies one-time selective security in the shared
randomness model. Our second construction is reusable and secure against a malicious adversary
in the random oracle model. Finally, we show how to use party-dynamic, distributed universal
samplers to produce ideal, correlated randomness in the party-dynamic setting, in a single round
of interaction.

3.1 Introduction
Many cryptographic protocols require public parameters to be generated in a secure manner. This is the
case, for instance, with trusted parameters used in many succinct zero-knowledge proofs [BCCT12], or
trusted RSA moduli used in cryptographic accumulators [Bd94]. Using incorrectly or insecurely generated
parameters in these settings can have devastating results, often completely breaking the desired security
properties. As a result, when such parameters are needed, the parties involved may wish to run a secure
multi-party computation protocol to generate them, guaranteeing security as long at least one of the parties
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is honest. However, this type of setup protocol is typically expensive to carry out and coordinate.
Universal samplers, introduced by Hofheinz et al. [HJK+16], offer a partial solution to this problem. A

universal sampler produces a single set of public parameters, which can later be used to securely sample from
any distribution. In their strongest form, note that universal samplers are inherently tied to the random
oracle model: in fact, they can be seen as a type of random oracle for sampling from arbitrary, structured
distributions, without leaking the underlying random coins in the process.

A downside of universal samplers is that they still require a trusted setup, even if it only needs to be done
once. Distributed samplers, recently introduced by Abram, Scholl and Yakoubov [ASY22, AWZ23], work
around this issue by allowing parameters to be sampled using a secure multi-party protocol with minimal
interaction. Each party publishes a single message, after which all parties can obtain a sample from the
desired distribution. More formally, a distributed sampler for n parties and a distribution D is defined by
a pair of algorithms (Gen,Sample), such that given a set of messages Ui = Gen(1λ, i), for i ∈ [n], one can
compute a sample R← Sample(U1, . . . , Un). The security requirement essentially states that this one-round
protocol must securely realize the ideal functionality for sampling from D, even when up to n− 1 parties are
corrupted.

The basic definition considers a ‘one-time’ or static setting, where there is a single distribution D that is
fixed ahead of time, and the parties can only obtain a single sample from D. This can be considered either
with security against a passive adversary, or an active adversary. Active security is particularly challenging,
due to the need to handle a rushing adversary, who may choose their messages Ui after seeing the messages
Uj of the other parties. This allows an attacker to “grind” different choices of their randomness, obtaining
different Ui, until finding an output R that she likes. So, the best form of security one can hope for in
this setting is a relaxation of the ideal functionality for sampling, where the adversary first obtains several
samples from D, before settling on a final output. A stronger variety of distributed samplers is one that is
reusable, for an unbounded number of queries. This is known as a distributed universal sampler. Similarly
to the case of a (non-distributed) universal sampler, this is only possible to construct in the random oracle
model.

Abram et al [ASY22] constructed distributed samplers in the plain model (no CRS) for any distribution
based on indistinguishability obfuscation and multi-key fully homomorphic encryption. Their first construc-
tion is secure only against a semi-malicious1 and non-rushing adversary. This was then upgraded to malicious
security in the programmable random oracle model, with a construction that is also reusable, and secure for
adaptive choices of the desired distributions. On top of this, they showed how distributed samplers can be
used for sampling arbitrary forms of correlated randomness, often used in MPC protocols, with a one-round
protocol.

We note that the constructions in [ASY22] are proven secure assuming that the underlying primitives
are secure against polynomially bounded adversaries. This is in contrast to similar primitives like non-
interactive MPC [HIJ+17] or probabilistic iO [CLTV15], for which the only general constructions are based on
subexponentially secure primitives. This highlights that the setting of computing randomized functionalities,
where no party has a private input, seems easier than that of general computations.

3.1.1 Our Results
In this work, we further explore the feasibility of distributed samplers, pushing their lower and upper limits
with both impossibility results and more powerful constructions. We focus on security in the UC model
[Can01], which gives strong composability guarantees. See Table 3.1.1 for an overview of our results and
prior relevant work.

Impossibility of Distributed Samplers Without Random Oracles.

We first pose the question: is it possible to build actively secure distributed samplers in the standard model,
that is, without random oracles? As a starting point, we observe that actively secure distributed samplers
cannot be built without a common reference string (CRS) in the UC model. This is an immediate consequence

1A semi-malicious adversary is one who follows the protocol, but may choose their random tape arbitrarily.
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Primitive Security model Setup Feasibility
Universal sampler Static None poly FE [LZ17]
Universal sampler Adaptive RO poly iO [HJK+16]
Unbounded US Static Shared rand. poly iO + SSB [AOS23, §4.1]
Distributed sampler Semi-malicious None poly iO + mkFHE [ASY22]
Reusable DS Malicious, UC RO poly iO + mkFHE + NIZK [ASY22]
Distributed sampler Malicious, ind. CRS subexp iO + subexp mkFHE + ELFs +. . . [AWZ23]
Distributed sampler Malicious, UC None impossible [HV16]
Distributed sampler Malicious, UC CRS impossible (§3.4)
Party-dynamic DS Semi-malicious Shared rand. poly iO + mkFHE [AOS23, §5]
Reusable, P-D DS Malicious, UC RO poly iO + mkFHE + NIZK [AOS23, §5]

Table 3.1.1: Overview of the feasibility of universal and distributed samplers in different settings. RO =
random oracle; poly/subexp = polynomial/subexponential hardness; mkFHE = multi-key FHE; ELF =
extremely lossy function

of the UC impossibility for same-output probabilistic functions of [CKL03], since the function D(1λ) we want
to compute has an unpredictable output and no inputs.

We observe also that generic actively secure distributed samplers without a CRS cannot exist even in
the standalone model with black-box simulation. If that was not the case, by sequentially composing a
distributed sampler with 2-round active OT protocols in the CRS model such as [PVW08] or [DGH+20], we
would obtain a 3-round OT protocol with active security and black-box simulation in the plain model. The
latter is known to be impossible [HV16].

For this reason, we investigate the CRS model. At first glance, it seems that distributed samplers are
then trivial: the CRS can directly encode a sample from the desired distribution. This solution does not
even need interaction. However, interactive distributed samplers with a CRS may have some advantages
over the trivial construction, if the CRS can be reused multiple times and/or is easier to generate, either
by being short or unstructured (i.e. a uniformly random string). We prove that if the construction is secure
against rushing adversaries in the UC model, none of the above properties can be satisfied in the standard
model.

All of these impossibilities come from our main result, below. Although the impossibility is in the UC
model, we show that it even holds for a restricted class of adversaries who always follow the protocol, but
behave in a rushing manner, sending their messages after receiving those of the honest parties. This only
strengthens our impossibility result.

Theorem 3.1.2 (Informal, c.f. Thm. 3.4.1). For any distributed sampler secure against rushing adversaries
in the UC model, for a distribution D where H∞(D) = ω(log λ), we have that H(R | crs) = O(log λ), where
crs denotes the CRS and R the output of the distributed sampler.2

This essentially rules out this flavour of distributed sampler for all practical applications, as we discuss
in the following corollaries.

Corollary 1: the collision probability is large. An immediate consequence of small Shannon entropy
is that the output of the distributed sampler has a high probability of a collision if the CRS is not changed.
This implies that in applications where more than one sample from D is needed, the same CRS cannot be
reused.

2We use H∞ to denote the min-entropy. We use H to denote the Shannon entropy. We refer to Section 3.3.2 for formal
definitions.
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Corollary 2: the CRS must be long. Less trivially, we show that this means that the CRS must be
at most O(λ) bits smaller than the Yao incompressibility entropy of D. Recall that this roughly measures
the compressed size of a sample from D, after applying any efficient compression algorithm. As a result, the
CRS must be almost as long as an output of D, after applying compression.

Corollary 3: the CRS must be ugly. Finally, we show that in meaningful scenarios, the CRS must
inherently be structured, or “ugly”, meaning that it requires private coins to sample. In practice, this type of
CRS must be generated by a trusted party or multi-party computation protocol, whereas obtaining a CRS
that can be sampled from uniform randomness is much easier, relying only on a public source of randomness
(or a hash function modelled as a random oracle).

Conclusion. Put together, the above corollaries show that UC-secure distributed samplers in the standard
model, with rushing adversaries, are essentially useless. Since the CRS can only be used once, is structured,
and as long as an output of D, in practice it will most likely be no easier to generate the CRS than to just
generate a sample from D.

Open questions. Our main impossibility result is in the UC model, with polynomial-time simulation
and dishonest majority. Recall that in this setting, rewinding is not allowed and simulation is inherently
black-box3. We leave to future work the question of proving impossibilities — or finding constructions —
for different settings, such as an honest majority, rewinding and non-black-box simulation.

Positive Results: Party-Dynamic Distributed Samplers.

On the positive side, we give new results in settings where the parties have access to a random oracle,
or in some cases, a public source of uniform randomness, called the shared randomness model. The main
difference between these settings is that random oracles are an idealised model that assumes the existence of
an exponential amount of randomness to which all the parties have access. The shared randomness model,
instead, is a more realistic setting in which all parties have access to randomness that grows polynomially
in the size of their inputs.

We construct party-dynamic distributed universal samplers, where the messages are independent of the
distribution we want to sample from, the set of participants and their number, which is a priori unbounded.
We analyse two notions of security. In one-time, semi-malicious security, the messages are used to generate
a single sample, and the underlying distribution and set of parties are chosen ahead of time. With reusable,
active security, the same messages are used to generate samples for multiple distributions and multiple subsets
of participants, both adaptively chosen by the adversary. Distributed universal samplers, i.e. distributed
samplers where the messages are independent of the distribution, were already built in [ASY22]. Prior to
this work, however, all constructions were tailored to a specific set of players, which forced a restart of the
protocol if participants joined or left.

Applications. Constructions supporting dynamic participants are ideally suited to non-interactive setup
ceremonies for SNARKs in a permisionless setting, such as blockchains. More generally, they can be used
for trusted setup in MPC protocols: imagine a world where every institution (e.g. governments, NGOs,
intergovernmental organisations, private companies,. . . ) publishes a distributed universal sampler message
on a public bulletin board. Any set of parties that wants to run an MPC protocol can now non-interactively
generate any CRS or correlated randomness4 they want by just combining the sampler messages of the
institutions they trust. The desired randomness is secure as long as just one of the participant’s randomness
is kept private. Furthermore, since our construction is party-dynamic, new organisations can join the protocol

3Although the UC model allows the simulator to depend on the real-world adversary, the notion of security is still black-box.
Indeed, it can be proven that a protocol is UC-secure if and only if it is secure against the “dummy adversary”, who simply
follows the instructions given by the environment [Can01]. By reframing the model in this way, we obtain a form of black-box
simulation: security requires the existence of a single simulator that works for every environment.

4Using a party-dynamic distributed correlation sampler, discussed below.
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at any time without requiring further action from the others. Of course, the use of iO makes our solution
currently impractical. However, we highlight that the task of obfuscating circuits is only required by the
institutions (which likely have more resources); the parties just need to evaluate the resulting programs. In
other words, for our solution to become practical, obfuscating does not need to be extremely efficient, what
matters is the efficiency of the evaluation.

Our results. A key tool we introduce for our party-dynamic constructions is an unbounded universal
sampler. Universal samplers are a way of securely sampling from any distribution, after a trusted setup phase
which outputs some public parameters, called the sampler parameters. Previous constructions [HJK+16,
LZ17] require the sampler parameters to be at least as large as the maximum size of the distribution. In the
unbounded setting, we impose no such constraint: the circuit-size of the distribution can be arbitrarily large.
Since the sample may be bigger than the sampler parameters, this inherently means that we need some
additional source of randomness (such as the shared randomness model, or random oracle). An immediate
application of unbounded universal samplers is to compile any protocol with a large CRS into one with a
small, reusable CRS in the random oracle model. This technique was recently applied in [ABI+23] to build a
private simultaneous messages protocol with succinct public parameters and messages that have logarithmic
size in the function input.
Theorem 3.1.3 (Informal). Assuming polynomially secure iO and somewhere statistically binding hashing,
there exist unbounded universal samplers in the shared randomness model.

Using the unbounded universal sampler, we obtain the following.
Theorem 3.1.4 (Informal). Assuming polynomially secure iO and multi-key FHE, there exist party-dynamic
distributed universal samplers for any distribution, which are:

• One-time secure against a non-rushing, semi-malicious adversary, in the shared randomness model

• Reusable and secure against a malicious and static adversary, in the UC model with local random
oracle (and assuming NIZK)

Party-Dynamic, Distributed Correlation Samplers.

As an application of our party-dynamic distributed samplers, we show how they can be used to obtain
party-dynamic, distributed, universal correlation samplers, where after each party publishing a single, short,
message, any subset of parties can obtain large amounts of correlated samples R1, . . . , Rn, defined by some
arbitrary, correlated distributions (adaptively chosen after the messages are sent). Formally, we phrase this
construction in the language of (public-key) pseudorandom correlation functions [BCG+20, ASY22].
Theorem 3.1.5 (Informal). Assuming polynomially secure iO and multi-key FHE, there exist party-dynamic,
public-key, pseudorandom universal correlation functions, for adaptively-chosen correlations in the UC model
with local random oracle.

Such primitive can be used, for instance, to build party-dynamic MPC with an information-theoretical
online phase [DPSZ12, IKM+13, IOZ14] and non-interactive offline phase: when a party joins the protocol,
it just needs to sent its public-key for the pseudorandom correlation function. After that, it can immediately
join the online phase, without the other players’ need to regenerate their pseudorandom correlation function
keys.

3.1.2 Related Work
Follow-up work on distributed samplers. In [AWZ23], Abram, Waters and Zhandry presented solu-
tions to circumvent the impossibility proven in this paper. Instead of aiming for a simulation-based security
definition, they show that, using strong primitives (including subexponential iO) but no random oracle, it
is possible to implement game-based definitions for distributed samplers that allow removing trusted setups
in one round while preserving the hardness of search problems and the security of most protocols against
active adversaries.
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The lower bounds in this paper provide an argument supporting that the complex game-based definitions
of [AWZ23] are necessary, as the more natural simulation-based definition is unachievable without a random
oracle. We point out that a simulation-based definition would be, in principle, desirable as there exist
situations for which the definitions of [AWZ23] are not sufficient. For instance, their notion of a hardness-
preserving distributed sampler does not allow removing the CRS from a NIZK while preserving soundness.
This is because hardness-preserving distributed samplers preserve the hardness of games only when the
challenger is efficient. Their second notion of indistinguishability-preserving distributed samplers also does
not work in all contexts. For example, consider the functionality F that provides the adversary with several
RSA moduli, lets the adversary choose one of them (denote the chosen modulus by N), and then allows
MPC over ZN (this is an interesting setting, e.g. for using MPC tools from [OSY21] that require a trusted
setup). There exists a protocol Π that, given an RSA modulus as CRS, implements F. However, if we
apply an indistinguishability-preserving distributed sampler [AWZ23], the result Π′ no longer implements
the functionality F (this can be proven using an entropy based argument, as we did in this paper).

We highlight that the ideas of [AWZ23] cannot be used to construct unbounded universal samplers without
random oracles. Indeed, the main obstacle that [AWZ23] managed to overcome is the unpredictability of
the output of one-round protocols when the adversary adopts rushing behaviour. The main challenge of
unbounded universal samplers is instead the incompressibility of ideal samples: how can we argue that the
unbounded universal sampler produces outputs that look ideal if the entropy in the construction is even
smaller than the entropy of one ideal sample? This issue is immediately inherited by all party-dynamic
primitives we introduced in this work.

iO for Turing machines. Our construction for unbounded universal samplers uses garbled circuits to
achieve succinctness, in a similar way to a construction of iO for Turing machines by Garg and Srini-
vasan [GS18]. The settings where these techniques are used are significantly different. One key difference is
also that in our setting we are able to prove security relying only on polynomially secure primitives, while all
existing constructions of iO for Turing machines rely on subexponentially secure primitives in their security
proofs. We note that another construction of iO for Turing machines [BFK+19] uses the shared randomness
model to avoid the size of the obfuscated program growing with a bound on the input. This is related to
our use of shared randomness for removing the size dependency in our succinct universal sampler, however,
the techniques are different.

Laconic function evaluation for Turing machines. Recently, Döttling, Gajland and Malavolta
[DGM23] showed how to construct laconic function evaluation for Turing machines (TM-LFE), also us-
ing the techniques of [GS18]. Is it tempting to think that one can build unbounded universal samplers from
the above primitive, as follows: the sampler consists of a TM-LFE hash key and an obfuscated program
that, on input the digest of a distribution D, outputs the TM-LFE encoding of a pseudorandom string r.
In order to obtain a sample from the distribution D, we retrieve the encoding produced by the obfuscated
program on input a digest of D. By decrypting this encoding using D, we obtain D(1λ; r) without learning
any additional information.

This is not, however, an unbounded universal sampler: if we rely on a TM-LFE scheme satisfying
simulation-based security, the size of the encoding produced by the obfuscated program is at least as big
as the sample D(1λ; r). Therefore, also the size of the sampler is bigger than the samples it produces.
This is exactly what we want to avoid in unbounded universal samplers. In [DGM23], the authors also
introduced a weaker indistinguishability-based security definition for TM-LFE, which can have encodings
that are sublinear in the size of D(1λ; r). However, this security definition is too weak for unbounded
universal samplers: it would only guarantee that if D(1λ; r) = D(1λ; r′), the adversary cannot tell whether
the sampler used r or r′.

Non-interactive key exchange. The setting of party-dynamic distributed samplers is similar to un-
bounded non-interactive key exchange (NIKE), which can be built using iO [KRS15]. NIKE is in some way
similar to a distributed sampler for the uniform distribution, but it satisfies a weaker security definition: the
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output of the NIKE is guaranteed to look random only if no party is corrupted. This implies, for instance,
that the derived output may depend only on the randomness of one party. Distributed samplers instead
achieve security even when the adversary takes part in the computation. This difference allows NIKE to
avoid many issues related to entropy.

One-round MPC. Distributed samplers can also be viewed as an inputless version of non-interactive
MPC [HIJ+17]. We recall that non-interactive MPC unavoidably achieves a weak definition of security in
which the adversary is allowed to learn the residual function (i.e. the function obtained by fixing the inputs
of the honest parties while leaving the other inputs free). To achieve this, the primitive needs to rely on a
PKI.

The fact that distributed samplers have no inputs gives a huge advantage: it allows us to satisfy a
standard definition of security, without even needing PKIs. Notice that the naive idea of running an NIMPC
protocol that, on input r1, . . . , rn, outputs D(1λ; r1 ⊕ · · · ⊕ rn) does not give a distributed sampler for D,
due to the residual function attack.

Two-round reusable MPC. Another related primitive is multi-party, reusable non-interactive secure
computation (MrNISC) [BL20], which performs MPC in the party-dynamic setting with minimal interaction.
In their construction, based on LWE, parties use the first round to publish encryptions of their input, and
later, can publish second round messages for computing any desired function with a subset of parties. While
related to distributed samplers, MrNISC does not allow secret randomness to be used in the function, unless
it is encoded as part of the inputs in the first round; therefore, it does not seem to help with building a
distributed sampler.

Roadmap.

In Section 3.2, we present a technical overview of our results. We describe preliminaries in Appendix 3.3.2.
In Section 3.4, we formalise our lower bounds. We discuss succinct and unbounded universal samplers in
[AOS23, Section 4]. Finally, we present our party-dynamic constructions in [AOS23, Section 5].

3.2 Technical Overview
We now give a high-level overview of the techniques used to obtain our results.

Notation. We denote the security parameter by λ. Even when not explicitly written, we assume that all
random variables depend on λ. We use bold font to denote vectors, e.g. v, single coordinates will be indicated
using subscripts, e.g. vi. The symbol ∼c denotes computational indistinguishability. We represent the set
of corrupted players by C, the set of honest players is instead denoted by H. We indicate the bit-length of
any string s by |s|. If c is a circuit, we use a similar notation |c| to denote the number of gates. We use
struct(c) to denote the structure of c. With an abuse of notation, we identify distributions D with circuits
mapping uniformly random strings of bits into samples. We say that a distribution is efficient if its circuit
has poly(λ) size.

3.2.1 (Im)possibility of Distributed Samplers without Random Oracle
As we motivated in the introduction, actively secure distributed samplers in the plain model with black-box
simulation are impossible. In the CRS model, instead, they are trivial to build: the CRS can directly encode
a sample from the underlying distribution. The result is a distributed sampler in which the parties do not
even need to communicate, since they just output the CRS.

We study how interactive constructions can improve upon the trivial solution. In principle, the advantages
can be multiple: the same CRS can be reused in many distributed sampler executions producing independent-
looking outputs. Moreover, the CRS of distributed samplers can be nicer (i.e. easier to generate) than the
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The Functionality FD
Initialisation. On input Init from every honest party and the adversary, the functionality activates
and sets Q := ∅. (Q will be used to keep track of queries.) If all the parties are honest, the functionality
outputs R $← D(1λ) to every honest party and sends R to the adversary, then it halts.
Query. On input Query from the adversary, the functionality samples R $← D(1λ) and creates a fresh
label id. It sends (id, R) to the adversary and adds the pair to Q.
Output. On input (Output, îd) from the adversary, the functionality retrieves the only pair (id, R) ∈ Q
with id = îd. Then, it outputs R to every honest party and terminates.

Figure 3.1: The distributed sampler functionality for rushing adversaries

direct encoding of a sample, for instance because of the smaller size, or because it is unstructured (i.e. a
uniformly random string of bits). The result of our analysis is that none of the above properties can be
satisfied: without a random oracle, distributed samplers essentially provide no advantage over the trivial
solution. In order for this impossibility to hold, we do not even need to aim for active security, it suffices
that the adversary is strongly semi-malicious: it may adaptively choose the randomness of the corrupted
parties after seeing the honest messages, but all corrupted players follow the protocol.

On the Unpredictability of Distributed Samplers in the CRS Model.

All the negative results mentioned above are consequences of the main theorem of this work: in a strongly
semi-malicious distributed sampler, where the underlying distribution D has high min-entropy, namely
H∞(D) = ω(log λ), the Shannon entropy of the output conditioned on the CRS is O(log λ).

All through the paper we carefully juggle different variants of entropy, each bringing a unique set of
properties we require during the proofs. Shannon entropy H has a powerful chain rule. Collision entropy
H2 gives us an elegant tool for building distinguishers, but lacks a chain rule and is not invariant under
computational indistinguishability (i.e. for two computationally indistinguishable random variables, H2 can
be vastly different). We also use min-entropy H∞, this is the smallest of the above mentioned and has the
fewest properties. Our assumption on the entropy of the random source D is H∞(D) = ω(log λ) (clearly
the task is trivial if D is constant) – this becomes the weakest assumption one can make using any of the
above notions (and thus makes our theorem stronger). Finally, Yao’s entropy is the only entropy we use
that remains invariant under computational indistinguishability (i.e. two computationally indistinguishable
random variables have the same Yao entropy). For formal definitions please refer to Section 3.3.2.

Distributed samplers against a rushing adversary. In order to understand the idea behind the result,
we need to recall the definition of distributed samplers with security against an active adversary [ASY22]. The
corresponding functionality provides the adversary with as many samples from the underlying distribution
as the adversary wants. The adversary can then select one of these values; the functionality outputs it to
all the honest parties. This kind of behaviour is needed to model the fact that, in the case of a rushing
adversary, the corrupted parties see the honest messages before they publish their own. In other words,
before committing to a choice, they can always test their candidate messages and discard them if they are
not happy.
Definition 3.2.1 (Distributed sampler - security against rushing adversaries). Let D(1λ) be an efficiently
samplable distribution. An n-party actively secure (resp. strongly semi-maliciously secure) distributed sam-
pler for D(1λ) is a one-round protocol implementing the functionality FD (see Figure 3.1) against a static
and active (resp. strongly semi-malicious) adversary corrupting up to n− 1 parties.

The security model. We consider the UC model against the “dummy adversary”, the one that simply
follows the instructions given by the environment. We recall that a protocol is UC-secure if and only if it is
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secure against the dummy adversary [Can01]. In this setting, there exists a unique simulator that works for
every environment. Since the role of the adversary is essentially assumed by the environment, we will use
the terms adversary and environment interchangeably. We work in the dishonest majority setting.

Our proof will only consider adversaries that behave honestly, i.e. they choose the randomness of the
corrupted parties uniformly at random and they follow the protocol. Notice that since we are proving a
lower bound, considering very weak adversaries such as the honest one makes our results even stronger.

In the ideal world, the outputs are restricted to a small set. The simulator of the distributed
sampler needs to provide the honest parties’ messages and the CRS to the adversary before learning the
choices of the corrupted players. Since the simulator runs in polynomial time, the number of samples received
from the functionality before the delivery is polynomially bounded. Let the corresponding set be Q.

Once the adversary supplies the corrupted messages, the output of the protocol is fixed (indeed, we
cannot rewind the adversary, as the UC model does not allow it). If the latter belongs to Q, the simulator
can easily instruct the functionality to output the right sample to all honest players. If instead that is not
the case, the only choice left for the simulator is to keep querying the functionality for new samples and hope
for a collision. Since the distribution has high min-entropy, this occurs with negligible probability. In other
words, the output must belong to Q with overwhelming probability. If that does not happen, the adversary
can easily distinguish the real protocol from the ideal world as the simulator is not able to make the honest
parties output the right result.

In the real world, the output is easily predictable from the CRS and the messages of the honest
parties. Let R denote the output of the distributed sampler, let crs be the CRS and let UH and UC denote
the messages of the honest and the corrupted parties respectively. The fact that the CRS and the messages
of the honest parties restrict the output is a set of polynomial size is a strong property. In particular, the
latter implies that H(R|crs, UH) = O(log λ). This equality holds in the ideal world, but what about the real
world? Unfortunately, Shannon’s entropy does not behave well under computational indistinguishability, i.e.
computationally indistinguishable random variables may have very different entropy. We prove, however,
that if the adversary honestly follows the protocol in the real world, H(R| crs, UH) = O(log λ).

Consider the distinguisher that, after receiving the CRS and UH , keeps regenerating the messages of the
corrupted parties following the protocol, and stores the outputs obtained in this way. In the ideal world, the
distinguisher will never obtain more than q(λ) different samples, where q(λ) is a polynomial upper-bound on
the cardinality of Q, the set of values queried by the simulator to the functionality. We notice that without
loss of generality q(λ) is known to the distinguisher as the simulator is fixed.

Using a technical argument based on entropy, we show that if H(R| crs, UH) is not O(log λ), in the
real world, there exists a non-negligible function δ(λ) such that for every polynomial j(λ), the j-th output
obtained by the distinguisher differs from all the previous ones with probability at least δ(λ). The crucial
point is that δ(λ) is independent of j. Indeed, as j increases, the probability of obtaining new outputs
becomes lower (the probability of colliding with one of the previous outcomes gets higher and higher). If this
probability decreases too fast, the number of different outputs obtained by the distinguisher may converge to
a certain threshold smaller than q(λ). Since the probability is always bounded from below by δ(λ), however,
in the real world, the distinguisher is able to obtain more than q(λ) different outputs in a polynomial number
of steps. This is sufficient to break the security of distributed samplers.

The final result: an easy application of the strong chain rule. At this point, proving our theorem
becomes simple. Since we are considering an honest adversary, the result described in the previous paragraph
immediately implies that H(R| crs, UC) is also O(log λ). Furthermore, UH is independent of UC , given the
CRS. In other words, H(UH |crs) = H(UH |crs, UC). By a simple application of the strong chain rule for
Shannon’s entropy, it is easy to show that H(R| crs) = O(log λ).

Indeed, consider the entropy diagram in Figure 3.2.5 Observe that H(R|crs) corresponds to the union of
5The diagram is not completely general as some of the intersections between the sets are empty, however, the figure is

sufficiently generic to describe our argument.
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Figure 3.2: Entropy diagram of the distributed sampler.

the blue, red, green and yellow areas, i.e. H(R|crs) = a+ b+ c+ d. We know that H(R|crs, UH) corresponds
to the union of the red and yellow areas, so, c + d = H(R|crs, UH). Similarly, H(R|crs, UC) corresponds to
the union of the green and yellow areas, so, b+d = H(R|crs, UC). We also observe that the union of the blue
and purple areas correspond to H(UH |crs)− H(UH |crs, UC) = 0, so a + e1 + e2 = 0. Finally, we notice that
both e1 +e2 and d are non-negative. Indeed, the former corresponds to H(UH |crs, R)−H(UH |crs, R, UC) ≥ 0,
whereas the latter corresponds to H(R|crs, UH , UC) ≥ 0. The fact that e1 + e2 ≥ 0 also implies that a ≤ 0,
so

H(R|crs) = a+ b+ c+ d ≤ b+ c+ 2d = H(R|crs, UH) + H(R|crs, UC) = O(log λ).

Bad News for Distributed Samplers.

All the results we discuss below hold in absence of a random oracle and for distributed samplers that achieve
UC-security against a strongly semi-malicious adversary.

Distributed sampler CRSs cannot be used twice. The first corollary of Theorem 3.1.2 is that two
distributed sampler executions using the same CRS have colliding outputs with non-negligible probability.
We recall that our theorem applies when the min-entropy of the underlying distribution is high, i.e. ω(log λ).
For all such distributions, the collision probability is negligible, i.e. two independent samples from D(1λ)
will almost always be different. As a consequence, by reusing the same CRS twice, we obtain samples that
do not look independent.

The reason at the base of our first corollary is that, by a simple application of Jensen’s inequality, the
average collision entropy H̃2(R| crs) is bounded from above by H(R| crs) = O(log λ). We recall that the
average collision entropy is defined as

H̃2(R| crs) := − log
(
P[R = R′]

)
where R and R′ are two distributed sampler outputs computed using the same CRS crs and the probability
is also over the randomness of crs. We conclude that P[R = R′] ≥ 1/poly(λ).

Distributed sampler CRSs are long. We prove that CRSs of strongly semi-malicious distributed sam-
plers cannot be small: they can be at most O(log λ) bits shorter than the Yao entropy of the underlying
distribution HYao(D)6.

6The Yao entropy of D roughly measures how much a sample from D can be compressed in polynomial time without losing
information.
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We prove this result by first observing that HYao(R| crs) = O(log λ). Indeed, as we motivated in the
previous paragraph, two distributed sampler executions using the same CRS have colliding outputs with
non-negligible probability. We can therefore consider the Yao’s compressor that outputs nothing and the
associated decompressor that, provided with the CRS crs, reruns the distributed sampler protocol in its head
and outputs the result R′. With 1/poly(λ) probability, R′ coincides with the input of the compressor.7 This
is enough to conclude that HYao(R| crs) = O(log λ).

We then show that HYao(R| crs) ≥ HYao(R) − |crs|. We prove this by noticing that, given a compressor-
decompressor pair (c′, d′) for HYao(R| crs), we can build a compressor-decompressor pair (c, d) for HYao(R)
as follows: c provides its input R to the distributed sampler simulator, corrupting no party. It obtains a
fake CRS crs′ that looks like the real one. It then outputs c′(R, crs′) along with crs′. The decompressor d
is exactly the same as d′. The success probability of (c, d) is the same as for (c′, d′) except for a negligible
quantity. The size of the compressed string has however grown by |crs| bits, increasing HYao(R) by the same
amount.

We point out that, in order to prove the above inequality, we cannot use the Yao chain rule of [KPW13,
Appendix B] as their compressor for HYao(R) has O(2|crs|) size.

Distributed sampler CRSs are ugly. Suppose that there exists a strongly semi-malicious distributed
sampler for the distribution D having CRS crs. We prove that it is possible to non-interactively and securely
generate a sample from D given only crs and public random coins. In other words, if there exists a distributed
sampler with nice CRS, also the underlying distribution can be encoded in a nice CRS. The second solution
may be preferable as it often requires less communication. As an additional corollary, if the distributed
sampler uses a URS (i.e. the CRS is a random string of bits), we can sample from D using just public
random coins. So, in the random oracle model, we would not even need a CRS.

Our idea is that, given crs and public random coins, each party can just rerun the distributed sampler
protocol with crs as CRS and the public coins as randomness for the players. The result R is clearly
indistinguishable from a sample from D. However, in order to prove that this protocol is secure, we need to
be able to simulate crs and the public coins, given R.

We simulate crs by feeding R to the distributed sampler simulator (we corrupt no party). Unfortunately,
the simulator cannot provide us with the randomness used by the parties. We proceed by brute-force: we
rerun the protocol in our head using the fake CRS and we hope that the output collides with R. If we fail,
we retry sampling a new fake CRS. Once we succeed, we output the fake crs and the randomness of the
parties that led to the collision.

By the first corollary of Theorem 3.1.2, we know that, on average over R, the collision probability is
1/poly(λ). So, for a polynomial fraction of all possible values R, the simulation succeeds after a polynomial
number of tries. For the remaining fraction of the support of D, our approach fails, meaning that the CRS
and the randomness of the parties might leak too much information about the output.

In other words, the sampling protocol we described is secure only for a polynomial fraction of the support
of D. The good news is that it is possible to tell if the result of our non-interactive sampling protocol lies
in the secure subset or not: the parties can locally run the simulator. If it succeeds with sufficiently high
frequency, they can be sure their output is secure, otherwise, they need to discard it, generate a new crs and
public coins and rerun the protocol. Since there is a polynomial fraction of the support of D that will not be
discarded, the players need a polynomial number of attempts before succeeding. We also point out that the
distribution of the outputs will be biased, but not significantly: if D describes the distribution of another
protocol’s CRS, it is still secure to use the outputs of our procedure as CRSs for such protocol.

How General is the Impossibility?

Our arguments seem to apply not only to the UC model but also to the more powerful settings of security
with superpolynomial simulation, and standalone security with rewinding. Informally, what Theorem 3.1.2
is saying is that the size of the distributed sampler messages sets an information-theoretic bound B on the

7We can make the decompressor deterministic using a PRF.
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number of samples that a simulator can encode in the messages it produces. An adversary can rerun the
distributed sampler protocol in its head a number of times that is significantly larger than B. In the real
world, it is supposed to obtain more than B distinct outputs, on the other hand, in the ideal world, this
does not happen. This suggests that the impossibility holds even if we rely on superpolynomial simulation.

Even rewinding does not seems to help: in the ideal world, with high probability, the output R of the
distributed sampler has non-negligible probability of being resampled (i.e., if the distinguisher reruns the
protocol in its head, regenerating the messages of the corrupted players, it has a high chance of reobtaining
R after a few tries). This is because R was the result of the rewinding process. If R had a low probability
of being resampled, the probability that rewinding output R would have been low in the first place. On the
other hand, in the real world, R has very low probability of being resampled (we want H(R|σ, UH) = ω(log λ),
otherwise, we rerun into the problems of the UC model). This leads to a successful attack. Whether these
ideas can be formalised will be part of future work.

3.2.2 Constructing Unbounded Universal Samplers
Our first positive result is a construction of an unbounded universal sampler in the shared randomness model.
Recall that in a universal sampler (US), the trusted setup algorithm outputs some sampler parameters U ,
which are later used to securely sample from a distribution D. Our goal is to ensure that the size of the
circuit that samples from D may be unbounded, and in particular, independent of U .

Succinct, Bounded Universal Samplers.

We start by building a US that is not totally unbounded, but is succinct, meaning that the size of U is
only polylogarithmic in the maximum circuit size L of the supported distribution D. To see the challenge in
achieving this, recall that the sampler parameters in the selective, one-time universal sampler by Hofheinz et
al. [HJK+16] consist of an obfuscated program. To sample from a distribution D, the program is fed with
the circuit describing D. It then uses a puncturable PRF to generate random bits used to sample from D
and outputs the result. If we want to obtain succinctness then there is no way the obfuscated program can
evaluate the sampling circuit, which may now be significantly larger than the sampler parameters. Therefore,
we cannot even provide D as input to the program, let alone evaluate it.

Taking advantage of the locality of garbled circuits. Our solution is to use garbled circuits. We
obfuscate a program SUSProg, which, instead of evaluating D itself, will output a garbling of D along with
one random label for each input wire and both labels for each output wire. At any point in time, a party
can evaluate the garbled circuit produced by SUSProg obtaining a sample from D.

The big advantage of garbled circuits is its locality: as long as there is way to retrieve the labels associated
with the input and output wires of any gate g, we can garble g without knowing the whole circuit to which
g belongs. Specifically, each execution of SUSProg takes as input a single gate of D and outputs its garbling.
The description of the gate will consists of a type (input, output, XOR or AND) and identifiers for the input
and output wires of the gate8. Since the operations SUSProg needs to perform are now independent of D, the
size of SUSProg can remain small. A similar idea was adopted by Garg and Srinivasan for the construction
of obfuscation for Turing machines [GS18] (see Section 3.1.2 for more discussion).

Making the garbled gates consistent. The first problem is that we need to ensure that different gates
are garbled consistently, in that whenever a wire of the circuit is re-used, the same wire labels are used. As a
consequence, all the executions of SUSProg associated with D cannot be independent, they all need to have
access to some common information.

To ensure this, we use a master garbling key mk to derive, using a PRF F , the randomness needed by
the garbling and the random bits given as input to D. Formally, the labels associated with a wire w will be

8Notice that the terminology distinguishes between input gate and input wire of a gate. The first one is used to denote an
input to the circuit, the second one is used to denote the input to a gate, i.e. the bit to which we apply an XOR or an AND. A
similar discussion applies to output gates and output wires.
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The Program PSUS[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hash z of D, index i, gate g and SSB proof π.

1. If Hash.Verify
(
hk, z, i, g, π

)
= 0, output ⊥.

2. mk← F1

(
K, z

)
3. Output Garble(1λ, g,mk)

Figure 3.3: Warm-up attempt for the unobfuscated SUS program

(k0
w, k

1
w)← F (mk, w). For each input gate g, we also use F to sample a random input bit, and give out the

corresponding wire label. For each XOR or AND gate g, we additionally use F to sample a permutation to
reorder the ciphertexts. For each output gate, we provide both wire labels.

We observe that every execution of SUSProg associated with D needs to retrieve the same key mk.
Furthermore, different distributions D and D′ need to use independent-looking garbling keys. If that is not
the case, we risk garbling different circuits using the same labels, which would compromise privacy.

We solve these issues by providing SUSProg also with a hash z of the circuit D. Since the size of z
is O(logL), we can input it to SUSProg without any troubles. The obfuscated program SUSProg will be
equipped with a puncturable PRF F1 and a key K. Using z as input for F1, SUSProg will retrieve mk and use
the latter to garble the provided gate. By the collision resistance of the hash function, different distributions
will correspond to different hashes and so, by the security of the puncturable PRF, to independent-looking
garbling keys. To make this argument compatible with indistinguishability obfuscation, we use a somewhere
statistically binding (SSB) hash function [HW15].

Limiting the leakage using SSB hashing. So far, nothing prevents the adversary from garbling a
circuit using SUSProg while providing an inconsistent digest z. This means that the adversary can retrieve
the randomness used to produce the sample from D by simply garbling the identity function along with
z = Hash(D).

Luckily, SSB hash functions help us in countering this attack. Indeed, SSB hashing can be used to prove
that a certain gate g is the i-th element in the preimage of z. So, if we provide the proof along with z, g,
i and the SSB hash key hk, the obfuscated program is able to check if g really is the i-th gate of D. If the
verification succeeds, the program can garble g using mk, otherwise, it can simply output ⊥.

SSB hash functions set an upper bound on the length of the messages that can be hashed. In our
construction, we set this to L(λ) blocks9. A nice feature of some SSB hashing schemes [HW15] is that both
the hash key and the SSB proofs have size O(logL). Furthermore, the proofs can also be verified in O(logL)
time. In other words, verifying the proofs in the code of SUSProg does not blow up the size of the program.

We present the construction so far in the program shown in Figure 3.3. To summarise, the adversary can
make SUSProg output only the garbling of D or independent-looking information. Indeed, any execution
inputting a hash other than z would lead to an independent-looking garbling key and hence, independent-
looking information. If instead z is input, all the adversary can receive is the garbled gates of D. If it tries
to provide a different gate, the hash check will fail.

Taking control over the outputs with a trapdoor. To prove security, we need to argue that our
program reveals no information in addition to the output of the garbled circuit. This is formalised by saying
that we can simulate SUSProg given a sample R from D. Clearly, the simulated SUSProg needs to output

9Each block will be the description of a different gate.
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R when run on D. Unfortunately, our obfuscated program cannot satisfy this property in the current state.
Indeed, the sample R may contain significantly more information than the size of SUSProg.

Here, we rely on the shared randomness model, where we require any party obtaining a sample to have a
long, uniform string u. Using u, we equip SUSProg with a trapdoor that allows us to program its output in
the security proof; we do this using the delayed backdoor programming technique from the adaptive universal
sampler in [HJK+16], also used in the malicious constructions of [ASY22]. To garble the i-th gate gi, we
provide SUSProg with a ui, corresponding to the i-th block of the randomness u. We hardcode into our
program an additional key k for a special kind of authenticated encryption scheme. In each execution, after
verifying the SSB proofs, SUSProg tries to decrypt ui using k. If decryption succeeds, the program outputs
the underlying plaintext, otherwise it resumes its usual behaviour, i.e. it garbles the provided gate.

The encryption scheme, which is based on puncturable PRFs, is designed so that ciphertexts are indis-
tinguishable from random strings, but the overwhelming majority of strings are not valid ciphertexts. When
a random ui is input into SUSProg, then, the probability of activating the trapdoor is negligible. In the
simulation, however, u will be the encryption of a garbled circuit simulated using R and D. By the security
of iO, the adversary will not be able to tell if the output is generated using the trapdoor or the standard
procedure.

Binding the trapdoor to the distribution. Finally, there is one weakness remaining in the construction:
we need to bind the random string u to the distribution D. At the moment, the adversary can easily tell
if u hides the encryption of a random circuit or not. It can simply garble D twice, once using u and once
inputting a random string. If the outputs differ, it must be that u activates the trapdoor.

Clearly, we cannot prevent the adversary from choosing the distribution and the random string as it
pleases, however, we can make sure that for different choices of (D,u), we obtain independent-looking
executions. Specifically, instead of equipping SUSProg with a hardcoded trapdoor key k, we generate k
along with mk using the PRF F1. Recall that the input given to F1 is a hash of D. In this way, different
distributions would use different trapdoor keys and so u would activate the trapdoor only in conjunction
with D.

Finally, we also want to ensure that when given different random strings, the garbled circuit output by
SUSProg changes. That corresponds to having a different garbling key mk. To ensure this, in each execution,
we provide SUSProg also with an SSB hash h of u. We then input h into the puncturable PRF F1 along
with z. In conclusion, we obtain a different garbling key and a different trapdoor key for every choice of
distribution and random string. To ensure that the string ui input to the program is consistent with the
hash h, we additionally modify SUSProg to receive an SSB proof that ui is the i-th block of the preimage of
h. The program checks the proof and outputs the garbled gate only if the verification succeeds. Otherwise,
it outputs ⊥.

To summarise, if the adversary does not input (h, z) into SUSProg, the program outputs information
that looks independent of the sample R. If it inputs (z, h) instead, the adversary is forced to provide a pair
(gi, ui) for a certain i ∈ [L] where gi denotes the i-th gate of D. If this is the case, the adversary receives
the scheduled garbling of gi, otherwise, it receives ⊥.

We present an informal description of the final version of the program in Figure 3.4. For the complete,
formal construction and its security proof, we refer to [AOS23, Section 4.1].

From Succinct to Unbounded Universal Samplers.

Once we have a succinct, but bounded, US, it is quite straightforward to obtain an unbounded US. Our
construction will simply run the setup procedure from the succinct US, and output its sampler parameters
U . This already allows us to sample from any distribution D up to some polynomial bound. To sample from
a larger D, we simply use U to run the setup algorithm for a second succinct US, with a bound of twice the
size (since the first US was succinct, this will always be possible for a sufficiently large security parameter).
This process is then iterated until we have a sampler that can support the distribution D.

For technical reasons, to prove this construction secure we need an additional property of the unbounded
US, which we call randomness extractability. Intuitively, this says that given a sampler output R and the
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The Program PSUS[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hashes h and z of u and D respectively, index i ∈ [L], random string v, gate g and SSB
proofs π and π′.

1. b← Hash.Verify
(
hk, h, i, v, π

)
2. b′ ← Hash.Verify

(
hk, z, i, g, π′

)
3. If b = 0 or b′ = 0, output ⊥.

4. (mk, k)← F1

(
K, (h, z)

)
5. x← Dec(k, v)

6. If x 6= ⊥, output x.

7. Otherwise, output Garble(1λ, g,mk)

Figure 3.4: Informal description of the unobfuscated SUS program

randomness that was used to compute the sampler parameters, it is possible to extract the randomness that
“explains” the output R from distribution D. We show that this property holds for our construction, and in
fact is easily achievable in a generic way for any universal sampler.

3.2.3 Building Unbounded and Party-Dynamic, Distributed Universal Sam-
plers

Our next goal is to obtain unbounded distributed universal samplers, where the sampler is derived from n
messages, one from each out of a set of n parties. As well as allowing the choice of distribution D to be
unbounded, and not tied to the sampler parameters, here we also want the sampler to be party-dynamic, so
the set of parties can be chosen dynamically from an unbounded set of possible parties.

A toy construction of a bounded, party-dynamic distributed sampler can be easily obtained from any
n-party distributed sampler for a fixed number of parties: each party simply runs the i-party distributed
sampler algorithm, for i = 2, . . . , n, and publishes all the n−1 messages. Of course, this construction requires
the size of each message to scale at least linearly with n.

To get an unbounded construction, we modify this blueprint by instead having each party publish a
single message consisting of an unbounded universal sampler. Later, to sample from a distribution with
some size-n subset of the parties, those parties’ unbounded USes will each be used to generate an n-party
distributed sampler message on-the-fly. Since we use an unbounded US, this construction is inherently tied
to the shared randomness model, where the subset of n parties must all hold a common string of uniform bits
to obtain their sample. We prove security in the one-time setting, against a non-rushing and semi-malicious
adversary.

Modelling Active Security. In the non-rushing setting, modelling security is quite straightforward and
similar to the case of non-party-dynamic definitions. When moving to an active adversary, however, we
have to be careful how to define security. Recall that with a static number of parties, active security of
a distributed sampler is defined using an ideal functionality, which allows the adversary to obtain several
samples from the distribution D, before settling on one it likes. This corresponds to the fact that in a
construction, every choice of a corrupt party’s randomness may lead to a different result from D.

In the party-dynamic setting, we consider a static adversary in the UC model: whenever a new party
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joins the system, the adversary must decide whether that party is corrupted or not. At the same time, we
need a way to model the fact that the adversary can try candidate messages of a corrupt party Pj , obtaining
different samples, before Pj has actually joined the system. To do this, we allow the adversary to input a
label idj , corresponding to a new choice of message for Pj , and can then obtain a sample for the desired
subset of parties that includes Pj . When Pj eventually joins, the adversary can either choose one of the
previously sent labels, “fixing” the relevant outputs to the corresponding samples, or choose a fresh label
which leads to freshly sampled outputs.

Achieving Active Security and Reusability. Next, we upgrade our construction to be actively secure,
and also reusable for an unbounded number of queries on arbitrary distributions. We do this in a black-box
way, starting from any one-time secure, party-dynamic construction. The main idea is to have each party
publish an adaptive (or reusable), bounded universal sampler [HJK+16] as its message, together with a NIZK
showing that it is well-formed. Then, whenever a subset of parties wants to obtain a sample, the adaptive
US is used to generate a message for a one-time, party-dynamic distributed US. By relying on a reusable
US, we ensure that each message from the one-time, party-dynamic construction is only used once. Recall
that our one-time, party-dynamic construction requires a source of public, shared randomness u to obtain
the sample; to generate u in a reusable way, we use a random oracle.

There is still one problem with this approach, though. An adversary may still adaptively choose the
messages of the corrupt parties, and the distribution D, after seeing the honest parties’ messages from the
one-time, party-dynamic distributed US (which is not secure against a rushing adversary). To fix this, we
again rely on the random oracle model. We force the adversary to commit to its messages before seeing
these messages, by making it query the random oracle with input the subset of parties, distribution D, and
adaptive universal sampler messages. The output of the random oracle is a λ-bit tag, which is fed into the
adaptive US before generating the one-time messages. Since the tag is unpredictable, this ensures that the
adversary cannot learn any outputs without first committing to its messages.

Party-Dynamic, Public-Key Pseudorandom Universal Correlation Functions (PCFs).

Our last construction is an application of party-dynamic distributed universal samplers, for generating cor-
related randomness. A public-key PCF [BCG+20, ASY22] is a one-round protocol for securely sampling
from n correlated random variables, where each party obtains one of the outputs, while learning nothing of
the other parties’ outputs. We show how to build public-key PCFs in the party-dynamic setting where the
correlation is adaptively chosen after the messages of the parties are sent. Our construction is quite simple,
and follows the blueprint of the previous construction for a fixed number of parties [ASY22]: each party
sends a public key for a PKE scheme, plus a message for a distributed universal sampler. The distributed
universal sampler messages are then used to sample from the distribution that encrypts the n outputs of
the correlation function under each of the parties’ public keys, allowing only the correct party to recover its
output. By relying on our party-dynamic distributed universal sampler, we immediately obtain a public-key,
universal PCF in the party-dynamic setting.

We present the construction directly in the actively secure and reusable setting (in the random oracle
model). Because of this, we achieve the stronger notion of an ideal public-key PCF, which securely realizes
the ideal sampling functionality (with suitable relaxations to account for rushing adversaries). In contrast,
without a random oracle, this type of PCF is impossible to achieve, unless one allows the parties’ messages
to be as long as the total output length of all queries to the correlation.

3.3 Preliminaries
3.3.1 Distributed Samplers
Distributed samplers (DS) are a strong primitive allowing n parties to securely generate CRSs with a single
round of interaction. Specifically, a distributed sampler for the distribution D(1λ) is a one-round protocol
that generates a sample R from D(1λ) without revealing any information except R itself.
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The notion was introduced for the first time by Abram, Scholl and Yakoubov in [ASY22]. In the paper,
the authors show how to build the primitive from indistinguishability obfuscation and multi-key FHE. In
this section, we recall their definition considering multiple adversarial models.

We start by consider security against a weakly semi-malicious adversary, i.e. a non-rushing adversary
that, as in the semi-honest model, follows the protocol, but before beginning the execution, it chooses the
random tapes of the corrupted parties as it prefers. If the adversary follows the protocol but instead chooses
the randomness of the corrupted parties after seeing the honest messages, we say that we are dealing with
a strongly semi-malicious adversary.
Definition 3.3.1 (Weakly semi-maliciously secure distributed sampler). Let D(1λ) be an efficiently samplable
distribution. An n-party distributed sampler (DS) for D(1λ) is a pair of PPT algorithms (Gen,Sample) having
the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1λ and the index i of the party
running it. The output is the distributed sampler message Ui of the i-th party. We assume that Gen
needs M(λ) bits of randomness.

2. Sample is a deterministic algorithm taking as input n distributed sampler messages (Uj)j∈[n], one for
each party. The output is a sample R.

We say that the distributed sampler is weakly semi-maliciously secure if there exists a PPT simulator Sim
such that, for every subset C ( [n] of corrupted parties and associated randomness (ρi)i∈C , the following
two distributions are computationally indistinguishable. (Ui)i∈H

(ρi)i∈C , R

∣∣∣∣∣∣∣
ρi

$← {0, 1}M(λ) ∀i ∈ H
Ui ← Gen(1λ, i; ρi) ∀i ∈ [n]

R← Sample(U1, . . . , Un)

{
(Ui)i∈H

(ρi)i∈C , R

∣∣∣∣∣ R
$← D(1λ)

(Ui)i∈H
$← Sim

(
1λ, C,R, (ρi)i∈C

) }
The security definition essentially states that even for the worst randomness choice of the corrupted

parties, the honest messages leak no information except the output itself. Observe that if we run Sample
over the simulated messages, the output coincides with R with overwhelming probability. Notice that any
adversary corrupting no party but just listening to the conversations is always able to obtain the output.
Indeed, the latter is just a deterministic function of the transcript.

It is possible to reformulate the above definition by saying that weakly semi-maliciously secure distributed
sampler is a one-round protocol implementing the functionality that provides all the parties with the same
sample R from D(1λ). Unfortunately, it is impossible to implement the above functionality against rushing
adversaries. Indeed, after receiving the messages of the honest parties, the adversaries can always rerun the
protocol in its head multiple times, changing only the messages of the corrupted parties. In this way, the
attacker obtains multiple samples from D(1λ), it can therefore choose the one it likes the most and send
the corresponding corrupted messages in the protocol. In other words, the adversary can always choose
the output among a set of polynomially many samples. For this reason, in the rushing setting, distributed
samplers are defined as in Definition 3.2.1.

3.3.2 Notions of Entropy
In information theory, entropy is used to measure the unpredictability of random variables. After almost
a century of research, several definitions have been formalised. In this appendix, we recall some of the
important notions and the related properties. We start with Shannon’s entropy [Sha48].
Definition 3.3.2 (Shannon’s entropy). Let X be a random variable having finite support. The Shannon’s
entropy of X is

H(X) := −
∑
x

P[X = x] · log
(
P[X = x]

)
.
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We recall also the notion of conditional Shannon’s entropy.
Definition 3.3.3 (Conditional Shannon’s entropy). Let X and Y be random variables having finite support
and let E be an event. The Shannon’s entropy of X conditioned on E is

H(X|E) := −
∑
x

P[X = x|E] · log
(
P[X = x|E]

)
.

The Shannon’s entropy of X conditioned on Y is instead

H(X|Y ) :=
∑
y

P[Y = y] · H(X|Y = y).

Shannon’s entropy satisfies an important property called the strong chain rule. We recall it below.
Theorem 3.3.4 (Strong chain rule). Let X and Y be random variables with finite support. Then,

H(X,Y ) = H(Y ) + H(X|Y ).

Notice that (X,Y ) is a random variable, so H(X,Y ) is defined as in Definition 3.3.2. We also recall the
following properties of Shannon’s entropy.
Lemma 3.3.5. Let X,Y and Z be random variables with finite support. Then,

• If X is uniform over a set of cardinality m, H(X) = logm.

• If X is independent of Y , given Z, H(X|Y, Z) = H(X|Z).

• H(X|Y,Z) ≤ H(X|Z).

• If f is a deterministic function, H(f(X)) ≤ H(X).
We now recall other definitions of entropy that are used to prove our results.

Definition 3.3.6 (Max entropy). Let X be a random variable with finite support, let E be an event. We
define the max entropy of X to be

H0(X) = log|Supp(X)|.
We define the max entropy of X conditioned on E to be

H0(X|E) = log|Supp(X|E)|.

Definition 3.3.7 (Min entropy). Let X be a random variable with finite support, let E be an event. We
define the min entropy of X to be

H∞(X) = − log
(
max
x

P[X = x]
)
.

We define the min entropy of X conditioned on E to be

H∞(X|E) = − log
(
max
x

P[X = x|E]
)
.

Finally, we recall the definition of collision entropy.
Definition 3.3.8 (Collision entropy). Let X and Y be random variables with finite support, let E be an
event. We define the collision entropy of X to be

H2(X) = − log
(∑

x

P[X = x]2
)

= − log
(
P[X = X ′]

)
,

where X ′ is independent and identically distributed to X. We define the collision entropy of X conditioned
on E to be

H2(X|E) = − log
(∑

x

P[X = x|E]2
)
.

The average collision entropy of X given Y is instead

H̃2(X|Y ) = − log
(∑
x,y

Pr[Y = y] · Pr[X = x|Y = y]2
)
.
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All the above definitions of entropy are not equivalent. For instance, Shannon’s entropy can assume
values that are significantly larger than min and collision entropy. The definitions are however related by
the following well-known inequalities.
Theorem 3.3.9. Let X be a random variable with finite support, let E be an event. We have that

0 ≤ H∞(X) ≤ H2(X) ≤ H(X) ≤ H0(X),

0 ≤ H∞(X|E) ≤ H2(X|E) ≤ H(X|E) ≤ H0(X|E) ≤ H0(X).

Yao’s Incompressibility Entropy.

All the entropy notions we recalled above are great for measuring information theoretic properties, however,
they all suffer from an important disadvantage, namely, they do not behave well under computational
indistinguishability. Specifically, if X ∼c X ′, the entropy of X can be significantly different from the entropy
of X ′, it does not matter which of the above definitions we consider.

We solve this issue by relying on a notion of computational entropy [Yao82, HLR07]. We recall the
definition.
Definition 3.3.10 (Yao’s entropy). Let (Xλ)λ∈N be an ensemble of random variables. We say that the Yao
entropy of X is smaller or equal to k(λ), written HYao(X) ≤ k(λ), if there exists a pair of polynomial sized
deterministic circuits (cλ, dλ)λ∈N such that

P[dλ(cλ(X)) = X] ≥ 2`(λ)

2k(λ)
− negl(λ).

In the above formula, `(λ) denotes the output size of cλ. The circuit cλ is called a compressor, whereas dλ
is called a decompressor.

In [HLR07], Hsiao, Lu and Reyzin generalised the definition to the conditional case. We recall it below.
Definition 3.3.11 (Conditional Yao’s entropy). Let (Xλ)λ∈N and (Yλ)λ∈N be two ensembles of random
variables. We say that the Yao entropy of X conditioned on Y is smaller or equal to k(λ), written
HYao(X|Y ) ≤ k(λ), if there exists a pair of polynomial sized deterministic circuits (cλ, dλ)λ∈N such that

P[d(c(X,Y ), Y ) = X] ≥ 2`(λ)

2k(λ)
− negl(λ).

In the above formula, `(λ) denotes the output size of cλ. The circuit cλ is called a compressor, whereas dλ is
called a decompressor. If HYao(X|Y ) ≤ k(λ) where k(λ) is O(log λ), we will simply write that HYao(X|Y ) =
O(log λ).

Essentially, Yao’s incompressibility entropy measures how much it is possible to compress, in polynomial
time, samples from a distribution X given that the outcome of the possibly correlated random variable Y is
known.

We observe that Yao’s entropy can assume values that are significantly larger than Shannon’s entropy.
Examples of this kind are the outputs of PRGs. In some particular cases, however, also the opposite is true.
For instance, there exist distributions X such that H∞(X) = O(log λ) but H(X) = ω(log λ). For all such X,
we have HYao(X) = O(log λ) (consider the compressor that outputs the empty string and the decompressor
that outputs the most likely element).

The following well-known lemma formalises the fact that Yao’s entropy preserves under computational
indistinguishability.
Lemma 3.3.12. Let (Xλ, Yλ)λ∈N and (X ′λ, Y

′
λ)λ∈N be two ensembles of random variables such that (Xλ, Yλ) ∼c

(X ′λ, Y
′
λ). Then, HYao(X|Y ) ≤ k(λ) if and only if HYao(X

′|Y ′) ≤ k(λ).
We highlight that Yao’s entropy is not the only notion of computational entropy [Rey11, HILL99, HLR07].

Among all the studied notions, it is however the one assuming highest values [HLR07]. We decided to use
Yao’s entropy exactly for this reason, making the results presented in this paper as strong as possible.
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3.4 Impossibility of Distributed Samplers without Random Oracle
We now present and prove our main theorem, namely that in a strong semi-malicious distributed sampler
H(R|σ) = O(log λ). The idea was sketched in the technical overview (see Section 3.2.1).
Theorem 3.4.1. Let D(1λ) be an efficient distribution such that H∞(D) = ω(log λ). In a strongly semi-
maliciously secure distributed sampler for D(1λ) in the UC model, we have that H(R | crs) = O(log λ).

Proof. Consider the distributed sampler execution in which the adversary controls a subset C of parties, but
behaves exactly as in the protocol. In particular, the adversary waits to receive the messages of the honest
parties and then it generates random (and independent) messages for the corrupted parties.

Let Sample be the algorithm used by the parties to reconstruct their output. In order to be as general
as possible, compared to Definition 3.3.1, we change the syntax of the procedure by providing it also with
the CRS crs, the index i of the party running it and the randomness used by Pi to generate its DS message
Ui. Let Gen(1λ, crs, j) be the algorithm used by party Pj to generate its message. We assume that such
algorithm requires Lj(λ) bits of randomness. Suppose that the generation of the CRS requires L(λ) bits of
randomness.

Consider the security game of the protocol, we start by focusing on the ideal world. Since the simulator
runs in polynomial time, there exists a polynomial upper bound q(λ) on the number of samples the simulator
queries to the functionality before providing (crs, UH) to the adversary. Let Q be the set containing the
responses to these queries.

Claim 3.4.1. In the ideal world, with overwhelming probability, R ∈ Q.

Proof of the claim. After the adversary provides UC , the output of the protocol R is determined and
known to the adversary. Notice that, if everybody is honest in the real world, all the parties obtain the
same R with overwhelming probability, so R is well defined. If that was not the case, the adversary can
easily distinguish the protocol from the simulation (in the ideal world, the honest parties always output the
same value, in the real one they would not). After receiving UC , the simulator needs to communicate to the
functionality that it must output R to the honest parties.

Now, observe that

P[D(1λ) = R] =
∑
x

P[R = x] · P[D(1λ) = x] ≤

≤ max
x

P[D(1λ) = x] = 2−H∞(D) = 2−ω(log λ).

So, P[D(1λ) = R] is negligible.
As a consequence, the simulator can make the honest parties output R only if R ∈ Q. Indeed, once R

is fixed, the probability that any subsequent query to the functionality collides with R is negligible. We
conclude that R ∈ Q with overwhelming probability, otherwise it would be possible to distinguish between
real world and ideal world. �

The next claim is used to prove that, in the real world, H(R |UH , crs) = O(log λ). We introduce some
notation.

Let p(λ) be a polynomial and let ι be the index of a fixed corrupted party. Consider the algorithm
D′UH ,crs(1

λ) defined as follows:

1. ∀j ∈ C : rj
$← {0, 1}Lj(λ)

2. ∀j ∈ C : U ′j
$← Gen(1λ, crs, j; rj)

3. Output R′ ← Sample(crs, UH , U
′
C , ι, rι)

Let S be the random variable denoting the set of samples produced by running D′UH ,crs(1
λ) p(λ) times.

Let E0 be the random variable having value 1 if R is well defined (i.e. every party outputs the same
value), 0 otherwise. Similarly, let E1 be random variable having value 1 if R ∈ S, 0 otherwise. Finally, we
define M(λ) := L(λ) +

∑
i∈[n] Li(λ).
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Claim 3.4.2. Suppose that, in the real world, H(R |UH , crs) is not O(log λ). Then, for every λ0 ∈ N, there
exists λ ≥ λ0 such that P[R 6∈ S|E0 = 1] ≥ 1/M(λ).

Proof of the claim. Observe that, for every x, y, z, w, we have

P[R = x |UH = y, crs = z, S = w] = P[R = x |UH = y, crs = z].

Indeed, given UH = y and crs = z, the value of R is determined only by the randomness used to generate
UC . Such randomness is independent of S. So, H(R |UH , crs, S) = H(R |UH , crs). We have that

H(R |UH , crs) = H(R |UH , crs, S) ≤ H(R,E0 |UH , crs, S) =

= H(R |UH , crs, S, E0) + H(E0 |UH , crs, S) ≤
≤ H(R |UH , crs, S, E0) + H0(E0) =

= H(R |UH , crs, S, E0) + 1. (3.1)

Now, we have that H(R |UH , crs, S, E0) is equal to

P[E0 = 0] · H(R |UH , crs, S, E0 = 0) + P[E0 = 1] · H(R |UH , crs, S, E0 = 1). (3.2)

We know that P[E0 = 0] is negligible, moreover,

H(R |UH , crs, S, E0 = 0) ≤ H0(R) ≤ log
(

2L(λ) ·
∏
i∈[n]

2Li(λ)
)

= M(λ).

We have proven that H(R |UH , crs, S, E0 = 0) = poly(λ), so, putting it together with (3.1) and (3.2), we
obtain

H(R |UH , crs) ≤ H(R |UH , crs, S, E0 = 1) + 1 + negl(λ). (3.3)
Now, we observe that

H(R |UH , crs, S, E0 = 1) ≤ H(R,E1 |UH , crs, S, E0 = 1) =

= H(R |UH , crs, S, E1, E0 = 1) + H(E1 |UH , crs, S, E0 = 1) ≤
≤ H(R |UH , crs, S, E1, E0 = 1) + H0(E1) =

= H(R |UH , crs, S, E1, E0 = 1) + 1. (3.4)

Furthermore, H(R |UH , crs, S, E1, E0 = 1) is equal to

P[E1 = 0|E0 = 1] · H(R |UH , crs, S, E1 = 0, E0 = 1)+

P[E1 = 1|E0 = 1] · H(R |UH , crs, S, E1 = 1, E0 = 1). (3.5)

We observe that

H(R |UH , crs, S,E1 = 1, E0 = 1) =

=
∑
w

P[S = w] · H(R |UH , crs, S = w,E1 = 1, E0 = 1) ≤

≤
∑
w

P[S = w] · H0(R |S = w,E1 = 1, E0 = 1) ≤

≤
∑
w

P[S = w] · log
(
p(λ)

)
= log

(
p(λ)

)
. (3.6)

We also notice that

H(R |UH , crs, S, E1 = 0, E0 = 1) ≤ H0(R) ≤ L(λ) +
∑
i∈[n]

Li(λ) = M(λ). (3.7)

133



Now, suppose that there exists λ0 ∈ N such that, for all λ ≥ λ0, P[E1 = 0|E0 = 1] ≤ 1/M(λ). We would
have that

H(R |UH , crs) ≤ H(R |UH , crs, S, E0 = 1) + 1 + negl(λ) ≤ by (3.3)
≤ H(R |UH , crs, S, E1, E0 = 1) + 2 + negl(λ) ≤ by (3.4)

≤ 1

M(λ)
·M(λ) + log

(
p(λ)

)
+ 2 + negl(λ) = by (3.5),(3.6),(3.7)

= log
(
p(λ)

)
+ 3 + negl(λ).

So, H(R |UH , crs) would be O(log λ) contradicting our initial assumption. We conclude that for every λ0 ∈ N,
there exists λ ≥ λ0 such that P[E1 = 0|E0 = 1] ≥ 1/M(λ). �

Claim 3.4.3. In the real world, H(R |UH , crs) = O(log λ).

Proof of the claim. By contradiction suppose that, in the real world, H(R |UH , crs) is not O(log λ).
Now, consider the adversary A that, given σ, UH , samples (q(λ)+1) ·λ ·M(λ) independent elements from

D′UH ,crs(1
λ) and outputs 1 if and only if it obtains strictly more than q(λ) distinct values in this way. We

show that such adversary can distinguish between real world and ideal world with non-negligible advantage.
First of all, we notice that A runs in polynomial time. Let R′j,ι be the output of the j-th execution of

D′UH ,crs(1
λ). Observe that the distribution of R′j,ι conditioned on UH , crs is the same as the distribution of

Rι, the output of the ι-th party, conditioned on UH , crs. By Claim 3.4.1,

P[R′j,ι 6∈ Q] = P[Rι 6∈ Q] ≤ P[E0 = 0] + P[R 6∈ Q] = negl(λ).

Hence, by the union bound and due to the fact that |Q| ≤ q(λ), in the ideal world, A outputs 0 with
overwhelming probability.

Now, let Sj be the random variable containing the values of the first j− 1 samples from D′UH ,crs(1
λ). We

know that, in the real world,

P[R′j,ι ∈ Sj ] = P[Rι ∈ Sj ] =

= P[E0 = 0] · P[Rι ∈ Sj |E0 = 0] + P[E0 = 1] · P[Rι ∈ Sj |E0 = 1] ≤
≤ negl(λ) + P[R ∈ Sj |E0 = 1].

We conclude that, for every λ0 ∈ N, there exists a λ ≥ λ0 such that

P[R′j,ι ∈ Sj ] ≤ 1− 1

2M(λ)

Now, we observe that, for every λ0 ∈ N, there exists a λ ≥ λ0 such that

P
[
|Sj·λ·M | = |S(j+1)·λ·M |

]
≤
(

1− 1

2M(λ)

)λ·M(λ)

and so, by the union bound, for the same values of λ,

P[|S(q(λ)+1)·λ·M+1| ≤ q(λ)] ≤P
[
∃j s.t. |Sj·λ·M | = |S(j+1)·λ·M |

]
≤

≤(q(λ) + 1) ·
(

1− 1

2M(λ)

)λ·M(λ)

Observe that

lim
λ→∞

(q(λ) + 1) ·
(

1− 1

2M(λ)

)λ·M(λ)

= 0,
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so, P[|S(q(λ)+1)·λ·M+1| ≤ q(λ)] is definitively smaller than 1/3. Therefore, for every λ0 ∈ N, there exists a
λ ≥ λ0 such that

AdvA(λ) =
∣∣∣P[A(1λ) = 0|ideal]− P[A(1λ) = 0|real]

∣∣∣ ≥
≥ 1− negl(λ)− 1/3 ≥ 1/2− 1/3.

We conclude that A distinguishes between the real world and the ideal world with non-negligible advan-
tage. This contradicts the security of the distributed sampler, therefore, in the real world, H(R |UH , crs) =
O(log λ). �

Claim 3.4.4. In the real world, we have that H(R |UC , crs) = O(log λ).

Proof of the claim. The messages of the corrupted parties are distributed as in the fully honest case.
So, switching the role of honest and corrupted parties does not affect the distribution of (σ, (Ui)i∈[n], R).
By applying the result of Claim 3.4.3 on the new set of corrupted parties, we obtain that H(R |UC , crs) =
O(log λ). �

Claim 3.4.5. In the real world, H(R | crs) = O(log λ).

Proof of the claim. By the strong chain rule of Shannon’s entropy, we have that

H(R |UH , crs) + H(R |UC , crs)− H(R |UH , UC , crs)+
+ H(UH | crs)− H(UH |UC , crs)+
+ H(UC |R,UH , crs)− H(UC |R, crs) =

=H(R,UH | crs)− H(UH | crs) + H(R,UC | crs)− H(UC | crs)+
− H(R,UH , UC | crs) + H(UH , UC | crs)+
+ H(UH | crs)− H(UH , UC | crs) + H(UC | crs)+
+ H(UC , R, UH | crs)− H(R,UH | crs)− H(UC , R | crs) + H(R | crs) =

=H(R | crs).

We observe that H(UC |R,UH , crs) ≤ H(UC |R, crs) and H(R |UH , UC , crs) ≥ 0. Moreover, since UH and
UC are independent given crs, H(UH | crs) = H(UH |UC , crs). We conclude that, by Claim 3.4.3 and 3.4.4,
H(R | crs) ≤ H(R |UH , crs) + H(R |UC , crs) = O(log λ). �

3.4.1 Distributed Sampler CRSs Cannot be Used Twice
We now discuss the first consequence of Theorem 3.4.1. Suppose that our distribution D(1λ) has high min-
entropy, i.e. H∞(D) = ω(log λ). We observe that the probability that two independent samples from D(1λ)
collide is negligible. Indeed, denoting the two independent outputs by R and R′, we have

P[R = R′] = 2−H2(D) ≤ 2−H∞(D) = 2−ω(log λ).

We show, however, that if we run a strongly semi-maliciously secure distributed sampler for D(1λ) twice
using the same CRS, the outputs collide with non-negligible probability. As a consequence, we cannot hope
to reuse the same CRS to generate independent looking samples.
Corollary 3.4.2. Let D(1λ) be an efficiently samplable distribution such that H∞(D) = ω(log λ). Consider a
strongly semi-maliciously secure distributed sampler protocol for D(1λ) in the UC model and let R and R′
denote the outputs of two protocol executions having the same CRS. Then, P[R = R′] ≥ 1/poly(λ).
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Proof. By Theorem 3.4.1, we know that H(R|crs) = O(log λ). Now, we have that

P[R = R′] =
∑
z

P[crs = z] · P[R = R′|crs = z] =
∑
z

P[crs = z] · 2−H2(R|crs=z) ≥

≥
∑
z

P[crs = z] · 2−H(R|crs=z)

We observe that f(x) := 2−x is a convex function, so, by Jensen’s inequality

P[R = R′] ≥
∑
z

P[crs = z] · 2−H(R|crs=z) ≥ 2−
∑
z P[crs=z]·H(R|crs=z) = 2−H(R|crs).

Observe that 2−H(R|crs) = 1/poly(λ).

3.4.2 Distributed Sampler CRSs Cannot be Short
A second consequence of Theorem 3.4.1 is that the CRSs of strongly semi-maliciously secure distributed
samplers cannot be short. Specifically, the bit-length of the CRS |crs| must be at most O(log λ) bits shorter
than HYao(D).

The Yao entropy HYao(R|crs) must be small. Although Yao’s entropy and Shannon’s entropy can
assume very different values, we prove that if H(R|crs) = O(log λ), also HYao(R|crs) = O(log λ). Indeed,
by Corollary 3.4.2, we know that two distributed sampler executions using the same CRS have colliding
outputs with non-negligible probability. We can therefore consider the compressor that on input (R, crs)
outputs the empty string and the decompressor that on input crs, runs the distributed sampler using crs
as CRS, outputting the result R′. Since there is a 1/poly(λ) probability that R = R′, we conclude that
HYao(R|crs) = O(log λ). Observe that we can make the decompressor deterministic using a PRF.

A chain rule for Yao’s entropy. To conclude our argument, we show that

HYao(R|crs) ≥ HYao(R)− |crs|. (3.8)

By the security of distributed samplers in the fully honest case, R and D(1λ) are computationally indistin-
guishable, so, HYao(R) = HYao(D). From this, we easily deduce that HYao(D)− |crs| ≤ O(log λ).

We highlight that in [KPW13, Appendix B], Krenn et al. proved the chain rule for Yao’s entropy,
which seems to immediately imply (3.8). Unfortunately, this is not the case. The idea at the base of their
proof is that given a compressor-decompressor pair (c, d) for HYao(R|crs), we can build a new compressor-
decompressor pair for HYao(R) with the same success probability as (c, d). On input R, the new compressor
performs a brute-force search for a crs′ such that d(c(R, crs′), crs′) = R, then it outputs c(R, crs′), crs′. The
decompressor instead is identical to d. Since, the output size of the new compressor is |crs| bits larger than
c’s, we obtain that HYao(R|crs) ≥ HYao(R) − |crs|. Observe however that if |crs| is more than O(log λ), the
new compressor does not run in polynomial time. That prevents us from using their result.

We notice that in our setting, the new compressor does not need to perform a brute-force search. Indeed,
in order to obtain a crs′, it can just feed R to the distributed sampler simulator for the fully honest case and
pick the CRS contained in the simulated view. The latter is indistinguishable from the the real CRS used
for the generation of R. This allows us to prove the chain rule even if |crs| is more than O(log λ).
Corollary 3.4.3. Suppose that H∞(D) = ω(log λ). If OWFs exist, the CRS crs of a strongly semi-maliciously
secure distributed sampler for D(1λ) in the UC model must satisfy HYao(D)− |crs| ≤ O(log λ).

Proof. We start by proving the following claim.

Claim 3.4.6. In the distributed sampler protocol, HYao(R|crs) = O(log λ).

Proof of the claim. Consider the following randomised pair of compressor and decompressor:
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• On input a pair (R, crs), the compressor c outputs the empty string.

• On input crs, the decompressor d runs the distributed sampler protocol in-its-head using crs as CRS.
Then, it outputs the result R′.

Observe that P[d(c(R, crs), crs) = R] = P[R = R′]. Since R and R′ are the outputs of two distributed sampler
executions using the same CRS, by Corollary 3.4.2, we know that

P[d(c(R, crs), crs) = R] =
1

poly(λ)

Now, consider the deterministic decompressor d′ that performs exactly the same operations as d, but uses a
PRF F to generate its randomness, i.e. d′ has a random PRF key K hard-coded in its circuit and it generates
its randomness by computing F (K, crs). By the security of the PRF

P[d′(c(R, crs), crs) = R] ≥ P[d(c(R, crs), crs) = R]− negl(λ) =
1

poly(λ)
.

Notice that the probability in the first term is also over K. So,

1

poly(λ)
≤P[d′(c(R, crs), crs) = R] =

∑
x

1

|K|
· P[d′(c(R, crs), crs) = R|K = x] ≤

≤max
x

P[d′(c(R, crs), crs) = R|K = x].

Let x̂ be the value of x associated with the maximum, let d′x̂ be the decompressor having K = x̂. We have
proven that the pair (c, d′x̂) is successful in compressing and decompressing with probability greater than
1/poly(λ). We conclude that HYao(R|crs) = O(log λ). �

Claim 3.4.7. In the distributed sampler protocol, HYao(R|crs) ≥ HYao(R)− |crs|.

Proof of the claim. Suppose that HYao(R|crs) ≤ k(λ) for some function k(λ). Then, there exists a
compressor-decompressor pair (c, d) such that

P[d(c(R, crs′), crs′) = R] ≥ 2`

2k
− negl(λ).

We now design a new compressor ĉ for R: ĉ feeds its input R to the distributed sampler simulator Sim for
the fully-honest case. The latter provides a CRS crs′ and the messages of all the parties. The compressor
outputs c(R, crs′) as well as crs′.

Let crs be the CRS used to generate R. By the security of the distributed sampler in the fully honest
case, we know that the triple (crs, (Ui)i∈[n], R) in the protocol is computationally indistinguishable from
(Sim(1λ, R′), R′) where R′ $← D(1λ). We conclude that the pairs (R, crs) and (R, crs′) are also computation-
ally indistinguishable. As a consequence,∣∣∣P[d(c(R, crs), crs) = R]− P[d(c(R, crs′), crs′) = R]

∣∣∣ = negl(λ).

We conclude that

P[d(ĉ(R)) = R] = P[d(c(R, crs′), crs′) = R] ≥ P[d(c(R, crs′), crs′) = R]− negl(λ) ≥

≥ 2`

2k
− negl(λ) =

2`+|crs|

2k+|crs| − negl(λ).

Observe that `+|crs| is the output size of ĉ. Notice also that ĉ is not deterministic, however, we can make it so
adopting the same technique used in Claim 3.4.6, i.e. by generating its randomness using a PRF. Specifically,
consider the deterministic compressor ĉ′ which has a PRF key K hard-coded in its circuit and generates its
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randomness by computing F (K,R), performing then the same operations as ĉ. By the security of the PRF,
we have that ∣∣∣P[d(ĉ′(R)) = R]− P[d(ĉ(R)) = R]

∣∣∣ = negl(λ).

So,

P[d(ĉ′(R)) = R] ≥ 2`+|crs|

2k+|crs| − negl(λ).

As in the proof of the previous claim, the probability in the first term is also over K. So,

2`+|crs|

2k+|crs| − negl(λ) ≤P[d(ĉ′(R)) = R] =
∑
x

1

|K|
· P[d(ĉ′(R)) = R|K = x] ≤

≤max
x

P[d(ĉ′(R)) = R|K = x].

Let x̂ be the value of x associated with the maximum, let ĉ′x̂ be the decompressor having K = x̂. We have
proven that the pair (ĉ′x̂, d) succeeds in compressing and decompressing R with probability greater than
2`+|crs|/2k+|crs| − negl(λ), so HYao(R) ≤ k(λ) + |crs|. We conclude that HYao(R|crs) ≥ HYao(R)− |crs|. �

By Claims 3.4.6 and 3.4.7, we have O(log λ) = HYao(R|crs) ≥ HYao(R) − |crs|. We notice that, by the
security of the distributed sampler in the fully honest case, R is computationally indistinguishable from
D(1λ), so, HYao(R) = HYao(D). We conclude that HYao(D)− |crs| ≤ O(log λ).

3.4.3 Distributed Sampler CRSs Cannot be (too) Nice
The niceness of a CRS cannot be defined in a mathematical way. However, informally speaking, we can say
that a CRS is nicer than another if it is easier to produce in an MPC setting, e.g. a uniformly random string
of bits (i.e. a URS) is simpler to generate than a random RSA modulus of unknown factorisation. Indeed,
if we aim for security with abort, we can generate a URS using a simple commit-then-reveal approach. On
the other hand, all the state-of-the-art constructions for the generation of RSA moduli rely on rejection
sampling: first the parties generate secret-shared (or encrypted) candidate primes p and q, they multiply
them and apply expensive (bi)primality tests on the secret-shared data [FLOP18, HMR+19, CCD+20]. After
sufficiently many trials (the number depends on the size of the modulus), the players obtain a valid RSA
modulus with high probability. This results in rather complex protocols.

In the previous sections, we have seen that the CRS of distributed samplers cannot be used more then
once and cannot be short. These facts suggest that directly encoding a sample from D(1λ) in a CRS is
probably better than relying on a distributed sampler protocol for D(1λ). At least in the first case, the
parties spare one round of interaction. But what if the CRS used by the distributed sampler is nicer than
any encoding of D(1λ)? We prove that this cannot happen as it is always possible to non-interactively
generate samples from D(1λ) using only distributed sampler CRSs and public random coins.

Non-interactive generation of samples from D(1λ) using a distributed sampler CRS and random
bits. In this section, we observe that a distributed sampler for D(1λ) allows us to construct an efficient
deterministic function De that maps pairs consisting of a distributed sampler CRS crs and uniformly random
bits r into values R that are computationally indistinguishable from D(1λ). This algorithm trivially outputs
the result of the distributed sampler using crs as CRS and r as randomness for the parties. The interesting
fact is that if the distributed sampler is strongly semi-maliciously secure in the UC model, the algorithm is
efficiently invertible with non-negligible probability. Specifically, we prove that there exists an efficient PPT
algorithm test, that outputs 1 with 1/poly(λ) probability when run over a sample R $← D(1λ). Moreover, if
this event occurs, it is possible to efficiently find a pair (crs, r) that looks random over De−1(R).

In other words, if we provide the parties with a distributed sampler CRS crs and public uniformly random
bits r, the parties can obtain a sample R from D(1λ) without any interaction. Furthermore, with 1/poly(λ)
probability, (crs, r) reveals no information in addition to what can be already inferred from R. Finally, the
honest parties can tell when (crs, r) reveals too much information, having therefore the opportunity to reject
R and restart.
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The game GInv
A (1λ)

The challenger performs the following operations

1. b $← {0, 1}

2. crs
$← CRS(1λ), r $← U(1λ)

3. R← De(crs, r)

4. If test(R) = 0, go back to step 2.

5. If b = 0, provide the adversary with (crs, r), otherwise provide it with En(R).

The adversary wins if it terminates its execution outputting b.

Figure 3.5: Invertibility game

Biases in the distribution. Notice that the selective rejection biases the distribution of the output.
However, any cryptographic protocol basing its security on R will remain secure even if R is sampled
according to the biased distribution. Indeed, at least a polynomial fraction of the samples is not rejected. If
the protocol was insecure in the new setting, there would be a non-negligible probability of sampling a bad
R even in the original protocol, which would therefore be insecure.

Why is De invertible with non-negligible probability? Our idea is based on the fact that in a strongly
semi-malicious distributed sampler, H(R|crs) is small. In other words, the CRS of the protocol describes the
output with high precision. Obtaining the exact CRS used for the generation of R is usually hard, however,
the simulator for the fully-honest case can provide us with a functionally equivalent object.

In order to completely describe R, we need to extract also randomness r for the parties, so that, using
r in conjunction with the CRS, we obtain R. Unfortunately, the simulator cannot provide much help here.
Indeed, given (crs′, (Ui)i∈[n])

$← Sim(1λ, R), it is usually hard to extract the randomness r used to generate
(Ui)i∈[n]. Actually, such r might not even exist. Luckily, in Corollary 3.4.2, we have proven that two
executions of a strongly semi-maliciously secure distributed sampler using the same CRS have colliding
outputs with 1/poly(λ) probability. So, if we run the distributed sampler protocol again using crs′ as CRS,
we obtain R again with non-negligible probability. Clearly, in the new execution, the value of (Ui)i∈[n] has
probably changed, however, this time we know the randomness r′ used to generate the messages.

On average invertibility. We observe that the probability of succeeding in inverting De is also over the
outcome of R. In other words, we just know that the average probability of inverting R is 1/poly(λ). That
does not mean that the overwhelming majority of values R is efficiently invertible: if R assumes an unlucky
value, we can try to invert as many times as we want without any hope of succeeding. We could prove,
however, that there always exists a polynomial fraction of the space of events for which R is easy to invert.

We also noticed that it is possible to efficiently test if R is easy to invert or not. Indeed, we can just try
to invert it many times, if the success frequency is lower than a certain threshold, we can reject R, otherwise,
we accept it. We used the Chernoff bound to find the threshold and the maximum number of inversion
attempts. In particular, we needed test to succeed with at least 1/poly(λ) probability.

The special case of URSs. As a corollary of the result described in this section, if the distributed
sampler uses a URS, it is possible to securely generate samples from D(1λ) using public random coins only.
In particular, in the random oracle model, the parties can securely sample from D(1λ) without interacting
and without needing any CRS.
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Corollary 3.4.4. Suppose that H∞(D) = ω(log λ) and there exists a strongly semi-maliciously secure dis-
tributed sampler for D(1λ) in the UC model. Let CRS(1λ) be the algorithm used to generate the CRS of the
protocol. Then, there exist a deterministic polynomial algorithm De and PPT algorithms En and test such
that

• De
(
CRS(1λ),U(1λ)

)
∼c D(1λ)

• P[test
(
D(1λ)

)
= 1] ≥ 1/poly(λ)

• No PPT adversary can win the game GInv
A (1λ) (see Figure 3.5) with non-negligible advantage.

Proof. We start by defining the algorithm De, which on input crs and random string r, runs the distributed
sampler protocol using crs as CRS and r as randomness for the parties, outputting the result.

Claim 3.4.8. De
(
CRS(1λ),U(1λ)

)
∼c D(1λ)

Proof of the claim. We observe that R := De
(
CRS(1λ),U(1λ)

)
is distributed exactly as the distributed

sampler output. By the security of the distributed sampler, we conclude that R ∼c D(1λ). �

We now define the PPT algorithm Inv as follows: Inv feeds the input R to the distributed sampler
simulator for the fully honest case. In this way, it obtains a fake CRS crs′ and messages (Ui)i∈[n]. Finally,
Inv picks a uniformly random string r and outputs (crs′, r).

Claim 3.4.9. Let R denote a sample from D(1λ). Then, there exists a polynomial q(λ) such that

P[De(Inv(R)) = R] ≥ 1

q(λ)

Proof of the claim. Let (crs′, r) := Inv(R). By the security of distributed samplers, we know that (crs′, R)

is computationally indistinguishable from (crs,De(crs, r)) where crs
$← CRS(1λ) and r is uniformly random.

We conclude that for r and r′ independent and uniformly random(
crs,De(crs, r′),De(crs, r)

)
∼c
(
crs′, R,De(crs′, r)

)
(3.9)

By Corollary 3.4.2, we know that

P[De(crs, r′) = De(crs, r
)
] ≥ 1

poly(λ)

We conclude that, by (3.9),

P[De(Inv(R)) = R] = P[De(crs′, r′) = R] ≥ 1

poly(λ)
− negl(λ) ≥ 1

poly(λ)

�

We now define the algorithm test as follows: on input R, test checks if De(Inv(R)) = R for 4λ ·q(λ) times.
If the equation is satisfied less than λ times, test outputs 0, otherwise it output 1.

In a similar way, we define En: on input R, En computes (crs′, r)
$← Inv(R) and checks if De(crs′, r) = R.

If that is the case, it outputs (crs′, r). Otherwise, it repeats the operation. If the procedure fails for more
than 8λ · q(λ), En outputs ⊥.

Claim 3.4.10.
P[test

(
D(1λ)

)
= 1] ≥ 1

8q(λ)
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Proof of the claim. We define px := P[De(Inv(x)) = x]. Let R be a sample from D(1λ). By Claim 3.4.9,
we know that

E[pR] =
∑
x

P[R = x] · px = P[De(Inv(R)) = R] ≥ 1

q(λ)

Since 0 ≤ px ≤ 1, we have that E[p2
R] ≤ E[pR], so, by the Paley-Zygmund inequality,

P
[
pR ≥

1

2q(λ)

]
≥ P

[
pR >

1

2
E[pR]

]
≥ 1

4
· E[pR]2

E[p2
R]
≥ 1

4
· E[pR] ≥ 1

4q(λ)

Define now Ωgood = {x|px ≥ 1
2q(λ)}. Suppose now that x ∈ Ωgood. If we run the check De(Inv(x)) = x for

8λ · q(λ) times, by the Chernoff bound, we know that it succeeds more than

1

2
· 4λq(λ) · px ≥ λ

times with overwhelming probability. So if x ∈ Ωgood, test(x) = 1 with overwhelming probability. We
conclude that

P[test
(
R
)

= 1] ≥ P[test(R) = 1|R ∈ Ωgood] · P[R ∈ Ωgood] ≥

≥ min
x∈Ωgood

P[test(x) = 1] · P[R ∈ Ωgood] ≥ 1

8q(λ)

�

Claim 3.4.11. No PPT adversary can win the game GInv
A (1λ) (see Figure 3.5) with non-negligible advantage.

Proof of the claim. As in the previous claim, let px := P[De(Inv(x)) = x]. Define now Ωbad = {x|px ≤
1

8q(λ)}. Suppose that x ∈ Ωbad. If we run the check De(Inv(x)) = x for 4λ · q(λ) times, by the Chernoff
bound, we know that it succeeds less than

2 · 4λq(λ) · px ≤ λ

times with overwhelming probability. So, if x ∈ Ωbad, test(x) = 0 with overwhelming probability.
Let R $← D(1λ). We observe that

P[En(R) = ⊥|test(R) = 1] ≤ P[R ∈ Ωbad|test(R) = 1] + P[En(R) = ⊥|R 6∈ Ωbad].

We know that

P[R ∈ Ωbad|test(R) = 1] ≤ P[test(R) = 1|R ∈ Ωbad]

P[test(R) = 1]
≤

≤ 8q(λ) · max
x∈Ωbad

P[test(x) = 1] = negl(λ).

Furthermore,
P[En(R) = ⊥|R 6∈ Ωbad] ≥ min

x 6∈Ωbad

P[En(x) = ⊥].

Notice that for every x 6∈ Ωbad, px > 1
8q(λ) . Observe also that En tries to invert the input up to 8λ·q(λ) > λ/px

times, so, with overwhelming probability En(x) 6= ⊥. We conclude that P[En(R) = ⊥|test(R) = 1] = negl(λ).
Now, suppose that En(R) = (crs′, r′) 6= ⊥. We recall that crs′ is obtained by running Sim(1λ, R), so by

the security of distributed samplers (R, crs′) ∼c (De(crs, r), crs) where crs
$← CRS(1λ) and r $← U(1λ). We

also know that r′ is random conditioned on satisfying De(crs′, r′) = R. In other words, (R, crs′, r′) is com-
putationally indistinguishable from (De(crs, r), crs, r). We conclude our proof observing that (R,En(R)) ∼c
(De(crs, r),En(De(crs, r))). �
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Chapter 4

Security-Preserving Distributed
Samplers: How to Generate any CRS
in One Round without Random
Oracles
Damiano Abram, Brent Waters, Mark Zhandry

Abstract. A distributed sampler is a way for several mutually distrusting parties to non-
interactively generate a common reference string (CRS) that all parties trust. Previous work
constructs distributed samplers in the random oracle model, or in the standard model with very
limited security guarantees. This is no accident, as standard model distributed samplers with full
security were shown impossible. In this work, we provide new definitions for distributed samplers
which we show achieve meaningful security guarantees in the standard model. In particular, our
notion implies that the hardness of a wide range of security games is preserved when the CRS
is replaced with a distributed sampler. We also show how to realize our notion of distributed
samplers. A core technical tool enabling our construction is a new notion of single-message zero
knowledge.

4.1 Introduction
Many protocols require a common reference string to be generated by a third party in order to securely run
the protocol. Importantly, the security of the protocol requires that the any secrets revealed during setup
are hidden from the parties of the protocol. For example, if the protocol relies on a public RSA modulus for
a reference string, the parties of the protocol must not know the prime factors. Such a structured common
reference string requires placing enormous trust in the third party, and naturally leads to the question:

What happens if the trusted third party is actually not trustworthy?

Digging deeper, there may be many potential third parties who are willing to run the setup: maybe certain
state organizations (e.g. NIST) as well and independent organizations (e.g. EFF). Some participants in
the protocol may trust some third parties, while some participants only trust other third parties, and there
may be no overlap between the trusted parties. How can we ensure that all protocol participants trust the
reference string?

An obvious solution is for all potential third parties to run an MPC protocol to generate the reference
string. Then, as long as each participant trusts a single third party, they will trust the reference string (CRS).
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However, engaging in an MPC protocol can be a logistical burden for these third parties. For comparison,
in a situation where the CRS is generated by a single trusted third party, that party can simply post the
reference string they produce to some public domain. In contrast, if many third parties are engaging in an
MPC protocol to compute the reference string, this requires the many third parties to send several messages
back-and-forth between each other.

Another issue is the difficulty of updating the CRS if we want to expand the number of involved trusted
parties. For example, suppose third parties A,B,C engaged in an MPC protocol to generate a CRS such
as an RSA modulus N . At some later date, users u, v wish to engage in a protocol using an RSA modulus,
but user u only trusts a new third party D and not A,B,C. Meanwhile v does not trust D since it is new.
Unfortunately, this would require A,B,C to come back online and interact with D to create a new modulus
N ′. A,B,C may be unable or unwilling to do so, as it would be an unreasonable burden to re-run the MPC
any time a trusted setup was requested with a new third party.

Solution: Distributed Samplers. Abram, Scholl, and Yakoubov [ASY22] proposed the notion of a
distributed sampler. Here, parties A,B,C each individually run their own setup algorithm locally, arriving
at messages UA, UB , UC , which they post to some public domain. Now when a set of users want a CRS
generated by A,B,C, they look up UA, UB , UC , and run a procedure which deterministically extracts a CRS
from UA, UB , UC . Because the process of computing the CRS from UA, UB , UC is deterministic, all parties
can compute it from UA, UB , UC for themselves, and therefore do not require any additional interaction.
Thus, the tuple UA, UB , UC now acts as the common reference string, which is simply the concatenation of
the individual messages of the various third parties. Informally, as long as a user trusts at least one of the
third parties, then they trust the CRS derived from the list of strings that includes that party.

When a set of users wishes to incorporate a new third party D, all they need is for D to generate and
post its own UD. Now the parties can derive a new CRS from UA, UB , UC , UD. Importantly the original
parties A,B,C do not need to do anything to add a new third party. In the follow-up work of [AOS23], a
construction is given that maintains security in such a scenario.

Limitations of Existing Work. The work of [ASY22] constructs two kinds of distributed samplers both
utilizing indistinguishability obfuscation. The first achieves semi-honest security, where the third parties
honestly generate their messages but wish to then break a protocol using the generated CRS. Unfortunately,
this notion of security is rather limited, since a truly malicious adversary could try to generate their mes-
sages dishonestly in order to influence the generated CRS. Such influence over the CRS offers much greater
flexibility in breaking the protocol. For example, if the CRS is for a statistically sound proof system, a
malicious adversary may try to influence the CRS into a “bad” one where false proofs exist.

The second distributed sampler achieves full malicious security in the UC model. However, the con-
struction requires the random oracle model, and worse requires the full power of programming the random
oracle.

Thus, the existing work either requires the full power of the random oracle model, or achieves only a very
limited notion of security. This is no accident: as shown by [AOS23], full standard model malicious security
is in fact impossible. So the question becomes: what kind of malicious security can be meaningfully achieved
in the standard model?

4.1.1 Our Work
In this work, we address the above limitations of prior work, by giving new definitions for distributed samplers
that avoid the above impossibility while still guaranteeing meaningful security against malicious adversaries,
and providing a new instantiation of distributed samplers satisfying this definition. As a crucial step toward
this goal, we also investigate single message zero knowledge proofs in the standard model, and provide new
constructions with novel features. A summary of our main results follows.

Defining Distributed Samplers. Our first contribution is to define new security notions for distributed
samplers. We describe a notion of security preserving distributed samplers, which implies that, for any
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game-based protocol using a reference string, security is preserved by the distributed sampler. That is,
if the protocol is secure under a reference string generated by a single trusted third party, then it is also
secure when the reference string is generated via a distributed sampler, as long as at least one of the parties
involved is trusted. We also give some technical definitions of security for distributed samplers that are
easier to reason about, and we show that these notions imply adequate notions of security preservation. See
Sections 4.5 and 4.6 for details.

Constructing Distributed Samplers. Next, we show how to construct distributed samplers meeting
our new definition. We obtain two flavours of the primitive: a CRS-less distributed sampler with security
against uniform adversaries and a construction achieving security against non-uniform adversaries by relying
on a short, reusable and unstructured CRS.

Our construction uses [ASY22] as a starting basis. However, we need to make several key changes.
Critically, we face the following challenge: in order to justify that the reference string is “as good as” an
honestly generated one, the reduction needs to be able to embed an actual honestly generated reference string
N into the honest third party’s message, and somehow force the adversary to generate their own messages in
a way that makes the derived reference string equal to N . But in the case of malicious adversaries, whatever
strategy the reduction uses, the adversary can seemingly use as well to force the derived reference string to
be their own, maliciously generated, N ′.

Extractable 1-message zero knowledge. Resolving the above problem requires many tools. One of the
main ones is a new 1-message zero knowledge proof, which crucially does not need a CRS. Now, such an
object is normally considered impossible, but it can be possible if the simulator is allowed to be non-uniform
while the adversary is required to be uniform. Such 1-message zero knowledge leveraging non-uniformity was
considered before [BP04]. However, our use of zero knowledge requires several features, such as the ability
for the reduction to extract the original proof from the sender’s message, that were not present in existing
1-message zero knowledge. We therefore develop a new 1-message zero knowledge proof system with several
useful features that we crucially leverage to achieve our notion of distributed samplers.

Updatability. The distributed samplers presented in this work assume that the set of participants is a-
priori given. As a consequence, our constructions tolerate inactive parties (their distributed sampler messages
can be generated using default randomness), but when new participants join, the protocol needs to restart.

Applications. A direct implication of our results is the existence of a 3-round OT protocol in the plain
model (no CRS) with security against active, uniform adversaries and non-uniform simulation. This is
achieved by directly applying our CRS-less distributed sampler to [PVW08]. More in general, our distributed
samplers imply 3-round active MPC in the plain model (no CRS) with security against uniform adversaries
and non-uniform simulation [BL18a].

Our distributed samplers can also be used to compile extractable NIZKs into 2-round zero-knowledge
proofs of knowledge1. The resulting constructions either rely on a short, unstructured CRS or no CRS at all,
depending on whether we aim for security against non-uniform adversaries or not. Furthermore, the 2-round
protocols satisfy automatically concurrent security, independently of the properties of the original NIZKs.

4.2 Technical Overview
4.2.1 New notions of distributed sampler
Full malicious security, and its impossibility. We first recall an informal description of the notion of
malicious security obtained by [ASY22], which follows the real/ideal paradigm as shown in Figure 4.1 (We
use D to denote the distribution of honestly generated CRSs. Such distribution can be private-coin). In the

1Our techniques do not apply to non-extractable NIZKs. This is due to the challenger of the soundness game being not
efficient.
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real world, the adversary is given the messages of the honest third parties, and then subsequently generates
the messages of the malicious third parties. The challenger then derives the CRS from the combined messages
of third parties, and gives it to the adversary. In the ideal world, the honest third party message is instead
generated by a simulator (which depends on the adversary), and the simulator is given as input a CRS
generated honestly from D. The adversary is then given the simulated message and the honestly generated
CRS. Security dictates that the two worlds are indistinguishable, which in particular implies that the derived
CRS is equal to the provided honest CRS in the ideal world.

A

Real	World

Gen
Ui

{Uj}j≠i

Sample R

b=0/1

Ideal	World

Sim

D

R1,…,Rq

A

Ui

{Uj}j≠i

Rt

b=0/1

t

Figure 4.1: An informal explanation of malicious security for distributed samplers. Here, Gen is the algorithm
for honestly generating the third party messages Uj and Sample is the algorithm that combines the messages
into the derived CRS R. i is the honest user, t is the simulator’s choice of which of the honest CRS samples
R1, . . . , Rq to use.

This brief description is obviously impossible, however. Indeed, a malicious adversary could be rushing:
after seeing the honest party’s message, it could generate several sets of malicious third party messages (but
even generate them honestly), compute the derived CRSs, and then select the set of third party messages
that give a CRS most advantageous to the adversary. This means it is impossible for the simulator to
guarantee that any single provided honest CRS is used by the adversary. To capture this ability of rushing
adversaries, the definition actually gives the simulator a polynomial number of honestly generated potential
CRSs, and the simulator can then choose which one gets sent to the adversary.

The above described notion of security is still impossible, as shown by [AOS23]. One basic reason is the
following: the simulator has to produce a message Ui, whose length is fixed by the protocol. However, the
sequence of honest CRSs provided to the simulator can be arbitrary long, since an arbitrary polynomial-
time adversary can generate arbitrarily many sets of third party messages, thereby allowing them to select
from an arbitrary polynomial number of CRSs. This means there is no way for a single Ui to embed all
of the CRSs. [AOS23] formalize an impossibility, and it seems rather robust, since although their results
apply only to the UC model with dishonest majority, different security settings such as standalone security,
superpolynomial simulation, honest majority, or having the protocol depend itself on a CRS do not seem to
solve the problem. The positive results of [ASY22, AOS23] therefore employ a random oracle. This avoids
the impossibility, since the simulator can now program the random oracle with the various CRSs, instead of
programming them into Ui. However, it requires the full power of programming the random oracle, and it
is unclear what kind of security this gives in the standard model.
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Our first notion: hardness-preserving distributed samplers. We now describe our new notions
of security for distributed samplers. The first we describe is that of hardness preserving, which is given
informally in Figure 4.2. There are two main differences from the security notion described. First, only a
single honest CRS is given to the simulator in the ideal world. This is necessary in the standard model,
as there is no way to program an unbounded number of CRSs into a fixed length simulated message. Note
that with this change we can no longer hope to force the derived CRS to be equal to the provided honest
CRS, except possibly with inverse polynomial probability. This means an adversary can distinguish real
from ideal in the majority of cases. So the second change is to relax indistinguishability to the following.
We only require that if the adversary outputs 1 in the real world with non-negligible probability ε1, then it
also outputs 1 in the ideal world with non-negligible probability ε2. But ε1 and ε2 do not need to be close,
and ε2 can be far lower than ε1.
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Figure 4.2: An informal explanation of hardness-preserving security for distributed samplers. It is the same
as Figure 4.1, except that there is only a single honest CRS in the ideal world, and the relation between
success probabilities in the two worlds is relaxed.

The obvious question is then: what kind of guarantees does such a relaxed definition provide? We
show that hardness preserving distributed samplers are good for guaranteeing security for various search
tasks. These are tasks where the adversary’s goal is to output some value with non-negligible probability (as
opposed to distinguishing tasks, where the goal is to output a value with probability non-negligibly larger
than 1/2).

More precisely, we consider a general search game between a challenger and adversary, where at some
step the challenger is provided with an honestly generated CRS, which it uses in its own internal logic but
also sends to the adversary. We can compile such a game into one where the CRS is generated via distributed
samplers, and the adversary controls all but one of the trusted third parties. A diagram of such a game and
its compilation is given in Figure 4.3. We show the following:
Theorem 4.2.1 (informal). If a distributed sampler is hardness-preserving and the search game is hard, then
the compiled search game is also hard.

Notice that there exists a non-negligible security loss between the original search game and the compiled
version. Furthermore, the loss depends on the running time of the adversary. This is unavoidable: a rushing
adversary can regenerate the corrupted party distributed sampler messages in its head many times, looking
for an output that gives a higher chance of solving the search problem. The advantage will therefore degrade
proportionally to the number of such trials, which is proportional to the running time.
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Figure 4.3: Search games and their compilations. The figure on the left is a search game utilizing an honest
CRS, while the figure on the right is the compiled game using a distributed sampler to generate the CRS.

Our second notion: indistinguishability-preserving distributed samplers. Hardness-preserving
distributed samplers achieve a somewhat limited form of security against active adversaries. For starters,
if the game is an indistinguishability game, the notion gives no guarantees. But a more subtle issue is the
following. Consider a protocol like a NIZK with CRS. The definition of zero knowledge says that there exists
a simulator which simulates both the CRS and the proof. Perhaps it generates the CRS such that it knows
a certain trapdoor, which allows it to generate a proof without knowing a witness. When using a distributed
sampler, we would like the ideal world to reflect this simulated CRS and proof. But this is not a simple
matter of plugging in the existing simulated CRS into the simulator for the distributed sampler, as there is
no way for the distributed sampler simulator to then use the CRS trapdoor to help generate the proof. In
the language of protocols and functionalities, this means that for a protocol Π with CRS which implements
a functionality F, the compiled protocol Π′ using the distributed sampler to generate the CRS might no
longer implement F.

The second distributed sampler notion we introduce, called indistinguishability-preserving, tries to tackle
this problem. The concept is informally described in Figure 4.4: an indistinguishability-preserving distributed
sampler compiles any protocol Π with CRS satisfying the condition at the top of Figure 4.4 for some
functionality F and simulator SimΠ, into a protocol without CRS satisfying the property at the bottom.

We focus for a moment on the property at the top of Figure 4.4. The condition states that the protocol
Π implements the functionality F. However, it actually gives a strictly stronger requirement: in the ideal
world, the CRS is simulated using a distribution D′ that produces both a sample R and a trapdoor T . While
the adversary receives only R, the simulator SimΠ receives also T . In the NIZK example, D′ would be the
trapdoored CRS, and T is the trapdoor. An important point is that the simulated CRS is independent of any
information known to the functionality. Not all protocols have this kind of simulation. For example, the HSS
construction of [OSY21] satisfies the property: the CRS is a large RSA modulus distributed identically to
the protocol and simulated before interacting with the functionality. On the other hand, imagine a protocol
where the CRS consists of an RSA modulus N . Suppose that the protocol allows, e.g., generic MPC modulo
N and N is chosen by the functionality (notice that the CRS is given by the functionality). If we use an
indistinguishability-preserving distributed sampler to generate N , the compiled protocol will not implement
the functionality anymore. This is because, in the simulation, we cannot ensure that the output of the
distributed sampler is the modulus N chosen by the functionality.

Moving on to the bottom of Figure 4.4, we observe that, in the ideal world, the sampling algorithm of the
distributed sampler has been substituted with a new algorithm called Trapdoor. The latter has the purpose
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Figure 4.4: An informal explanation of indistinguishability-preserving security for distributed samplers.

of extracting the trapdoors from the outputs of the simulated distributed sampler. The resulting values are
then given to SimΠ. Observe that the property at the bottom implies that the compiled protocol implements
F.
Theorem 4.2.2 (informal). If a distributed sampler is indistinguishability-preserving and the protocol Π
implements the functionality F as in the top of Figure 4.4, then the compiled protocol also implements F.

The definition of indistinguishability-preserving distributed sampler is actually more general than what
we outlined here: it provides security guarantees even when the sample from D is not given as a CRS but
as an “oracle sample” revealed halfway through the execution of the protocol. It is still possible to compile
this kind of protocol using a distributed sampler: instead of executing it at the beginning, the parties will
run it at a later stage. Sometimes, when the first round of the protocol Π is independent of the CRS, this
fact allows us to compile Π without adding rounds of interaction. For more details, check Section 4.5.2.

Lossy distributed samplers. In the paper, we introduce one last notion: lossy distributed samplers.
This will be a convenient technical notion that will help us realize our notions of distributed samplers from
above. Such a lossy sampler consists of two modes of operation: in addition to a standard mode, in which
the output remains unpredictable as long as one party is honest, there exists a lossy mode. When the latter
is activated, the output becomes predictable: with overwhelming probability, it will lie in a set of polynomial
size determined by the messages of the honest parties. Distinguishing between standard and lossy mode will
always be possible, however, for any given PPT adversary. But by choosing sufficiently large parameters
for the lossy mode, we ask that the distinguishability advantage for any given adversary can be made an
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arbitrarily small non-negligible function, i.e. for every PPT A and δ = 1/poly, there exists a sufficiently large
q2 such that ∣∣Pr

[
A → 1

∣∣StandardMode
]
− Pr

[
A → 1

∣∣LossyMode(q)
]∣∣ ≤ δ.

From lossy to hardness-preserving distributed samplers. We use lossy distributed samplers to
build hardness-preserving distributed samplers. Consider an adversary A that, in the real-world game
of the hardness-preserving distributed samplers (see Figure 4.2), interacts with the standard mode of the
construction. The idea is that if the adversary outputs 1 with non-negligible probability, we can activate the
lossy mode with sufficiently large parameters so that A keeps outputting 1 with non-negligible probability.
The main difference is that, now, the output of the construction is all of a sudden predictable.

At this point, we make use of a property that is satisfied by some lossy distributed samplers: programma-
bility. The latter guarantees that we can hide an ideal sample R̂ $← D among the outputs of a lossy-mode
distributed samplers without the adversary’s realizing. Since the output space is polynomial in size, the
adversary ends up obliviously selecting R̂ as output of the protocol with p = 1/poly probability. Conditioned
on this event, A still outputs 1 with non-negligible probability ε. In conclusion, in the ideal world, the
challenger just needs to send lossy-mode messages. The adversary will output 1 with probability at least
p · ε.
Theorem 4.2.3 (Informal). Any programmable, lossy distributed sampler is hardness-preserving.

4.2.2 Building lossy distributed samplers
We explain how to build programmable, lossy distributed samplers using, among other tools, indistinguisha-
bility obfuscation [GGH+13], multi-key FHE [AJJM20], extremely lossy functions (ELFs) [Zha16] and a new
primitive called almost everywhere extractable NIZKs. We make extensive use of subexponentially secure
primitives. The resulting lossy distributed sampler makes use of a short (polynomial in λ, but independent
of D), unstructured and reusable CRS (the construction is secure even if the CRS is reused in multiple con-
current instantiations of the protocol, potentially involving different subsets of parties). Our construction
originates from the semi-honest distributed sampler of [ASY22]. We briefly recall it.

The encryption program. In [ASY22], a distributed sampler message consists of two obfuscated pro-
grams. Adapting the terminology to this paper, we call them the encryption program and the decryption
program.

The encryption program of party Pi takes care of generating a multi-key FHE encryption of a random
string si under a fresh key pki. The output of the construction will be obtained by adding the n random strings
s1, . . . , sn and feeding the result as randomness for D, i.e. the output sample is R := D(1n; s1 ⊕ · · · ⊕ sn).
Observe that thanks to the homomorphic properties of multi-key FHE, given the encryptions of the random
strings, everybody is able to derive an encryption of R3. The issue is that nobody is able to decrypt it: the
output of the multi-key FHE evaluation is encrypted under a “joint key”. In order to decrypt, the parties
usually need to collaborate: each of them performs a partial decryption of the joint ciphertext and publishes
the result. By pooling together the partial plaintexts, everybody can reconstruct the hidden message.

The decryption program. Usually, a multi-key FHE decryption requires interaction. In the distributed
samplers of [ASY22], however, the decryption program takes care of everything without needing additional
rounds of interaction.

Formally, the decryption program of party Pi takes as input the encryption programs of all the parties and
evaluates them. After receiving the encryption of sj for every j ∈ [n], the program retrieves an encryption
of the output R by applying homomorphic operations on the ciphertexts. Observe that all the decryption
programs derive the same joint ciphertext C. The execution terminates by performing a partial decryption
of C using the private counterpart of pki. The program outputs the resulting partial plaintext.

2q is a polynomial that upper bounds the size of the output space.
3The fact that the ciphertexts are encrypted under different keys does not constitute a problem.
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EProg[Ki]

Hard-coded. The PPRF key Ki.
Input. A digest y.

1. (si, ri, r
′
i)← F (Ki, y)

2. (pki, ski)← mkFHE.Gen(1λ; ri)

3. ci ← mkFHE.Enc(pki, si; r
′
i)

4. Output (pki, ci).

Figure 4.5: A sketch of the unobfuscated encryption program of party Pi

Observe that by evaluating all the decryption programs, the parties are able to retrieve all the partial
decryptions of C. At that point, reconstructing R is immediate.

Counteracting the residual function attack. A common issue of all 1-round MPC protocols is that
an adversary can rerun the protocol in its head many times changing a subset of the messages. The outputs
of all these executions are correlated with the inputs of the honest parties. For particular functionalities,
this could leak enough information to reconstruct the input of the honest parties.

In distributed samplers, there are no private inputs but we still need to be careful: we need to make
sure that, in every distributed sampler execution, the encryption programs use independent looking random
strings s1, . . . , sn. If that was not the case, the adversary might use the residual function attack to learn
information about the randomness used in the main execution of the protocol.

In [ASY22], the authors ensure this by feeding the encryption program of each party with the hash of
the encryption programs of the other players (notice that inputting the program themselves would not be
possible for a matter of sizes). The encryption program generates the randomness for the multi-key FHE key
pki and the string si by inputting the hash into a puncturable PRF. Observe that if any adversary reruns the
distributed sampler in its head modifying any of the other messages, the hash fed in the encryption program
changes. As a consequence, the program will use an independent looking si (and an independent looking
multi-key FHE key pair).

In our lossy distributed sampler, the encryption program will remain the same as in [ASY22]. We sketch
its code in Figure 4.5.

Adding extractable NIZKs. The main change we bring to the construction is to add non-interactive
zero knowledge (NIZK) proofs of the well-formedness of the encryption programs. These proofs will be
inputted into the decryption programs. When any of the proofs do not verify, the decryption program will
output ⊥. We sketch their code in Figure 4.6.

In order to describe the lossy mode of the distributed sampler, we assume that the NIZK is extractable,
which means there is a special trapdoor that allows for extracting from any proof the witness used to generate
the proof. We defer the discussion of the exact properties needed until later in this overview.

The lossy mode of the distributed sampler tweaks the programs of one of the honest parties as follows. The
encryption program will generate simulated public keys and ciphertexts. The decryption program, instead
of verifying the NIZKs, will extract the witnesses from them using the extraction property of the NIZK.
From the latter, it will derive the randomness used to generate the multi-keys FHE keys and ciphertexts of
the other players. At that point, similarly to [HIJ+17], it simulates the partial decryption instead of directly
performing it. We recall that the simulator for the partial decryption takes as input a targeted plaintext
R′ [AJJM20]. Such value might differ for the actual message hidden in the joint ciphertext C, however, the
output of the decryption is still guaranteed to be R′.
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DProg[Ki,EPi, σ, (idj)j 6=i]

Hard-coded. The PPRF key Ki, the encryption program EPi, the CRS for a NIZK σ, the identities
of the other parties (idj)j 6=i.
Input. Set of n− 1 tuples (EPj , πj)j 6=i where EPj is the encryption program of party Pj and πj is a
NIZK proving its well-formedness.

1. ∀j 6= i : bj ← NIZK.Verify(σ, idj , πj ,EPj)

2. If ∃j 6= i such that bj = 0, output ⊥

3. ∀j ∈ [n] : yj ← Hash
(
(EPl)l 6=j

)
4. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

5. C ← mkFHE.Eval
(
D, c1, . . . , cn

)
6. (si, ri, r

′
i)← F (Ki, yi)

7. (pki, ski)← mkFHE.Gen(1λ; ri)

8. di ← mkFHE.PartDec(C, ski)

9. Output di

Figure 4.6: A sketch of the unobfuscated decryption program of party Pi

Decreasing the size of the output space using an ELF. In the lossy mode, the output of the
protocol is decided by the party that sends the lossy-mode programs (those that simulate the multi-key
FHE operations). How can we restrict the output space to a set of polynomial size without the adversary’s
immediate detecting the small output space? After all, the adversary could keep generating outputs, hoping
to find a collision. After only a polynomial number of outputs, the adversary would expect to find such a
collision in the lossy mode.

To rectify this issue, we have the size of the lossy output space be a polynomial that grows with the
adversary’s run time and success probability, making sure it is a sufficiently large polynomial that the
adversary cannot detect it in the time give.

At a lower level, we use extremely lossy functions (ELFs) [Zha16]. These are randomized algorithms
generating deterministic functions with large domain. The primitive has two modes of operations: injective
mode and lossy mode. When the first mode is activated, the function is injective. In the other case, the
image of the function has size smaller than q, where q is a polynomial parameterizing the lossy mode.
The two modes will be always distinguishable with non-negligible advantage. ELFs guarantee that, for any
adversary A and inverse-polynomial δ, by choosing a sufficiently large polynomial q, it is possible to make
the distinguishability advantage between the injective mode and the lossy mode smaller than δ.

In our construction, we generate the value R′ input in the partial decryption simulator by applying
an ELF on the concatenation of the encryption programs of the n parties. The result is then fed in a
puncturable PRF. Its output is used as randomness for D(1λ). In this way, when the ELF has a small image,
the distributed sampler will have a small output space. We skecth the code of the lossy-mode programs in
Figure 4.7 and Figure 4.8.

Programmability. It is easy to see that our candidate distributed sampler is programmable: in order to
hide an ideal sample R̂ in the output space, we can just pick a random value ẑ in the image of the ELF
f and input R̂ into the partial decryption simulator whenever f(EP1, . . . ,EPn) = ẑ. By the security of
puncturable PRFs, the changes cannot be detected by the adversary. Furthermore, if the ELF satisfies an
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EProgLs[Ki]

Hard-coded. The PPRF key Ki.
Input. A digest y.

1. (ηi, η
′
i)← F ′(Ki, y)

2. (φ, pki, ci)← mkFHE.Sim1(1λ; ηi)

3. Output (pki, ci).

Figure 4.7: A sketch of the unobfuscated encryption program for the lossy mode

additional property called regularity [Zha16], it is guaranteed that the event f(EP1, . . . ,EPn) = ẑ occurs
with inverse-polynomial probability.

4.2.3 Security Proof Challenge 1: Simultaneous Extraction and Statistical
Soundness

At this point, we can try to prove the security of the candidate lossy distributed sampler. However, there
are some challenges that need to be overcome.

The first challenge is the following. In the lossy mode, we need to be able to extract witnesses from valid
proofs. However, zero knowledge implies that there are false proofs that contain no witnesses. The existence
of these false proofs presents a problem for proving security using indistinguishability obfuscation.

More generally, consider the following general setup. There is a program C0 receiving n values x1, . . . , xn
as inputs from n parties along with n NIZKs proving their validity. The program C0 outputs ⊥ whenever
any of the NIZKs does not verify. In the other cases, it outputs C(x1, . . . , xn) where C is some circuit. There
also a second program C1 that, instead of verifying the NIZKs, it tries to extract the witnesses hidden in
them (C1 outputs ⊥ if the extraction of any witness fails). Then it uses the extracted witnesses to attempt
to simulate the same behavior as C0. The goal is to have obfuscations of C0 and C1 be indistinguishable.

The problem of differing inputs. The main issue is that C0 and C1 have differing inputs: the zero-
knowledge property of the NIZKs guarantees the existence of proofs for which the witness cannot be extracted
despite verification succeeds. On these inputs, the behavior of C0 and C1 can be easily told apart. In order
to apply indistinguishability obfuscation, however, we need C0 and C1 to be equivalent programs.

Fortunately, finding these differing inputs is hard. Therefore the natural tool to achieve indistinguisha-
bility between obfuscations of C0 and C1 would be differing-input obfuscation [BGI+01]. The existence of
such primitive is, however, controversial due to some results suggesting its impossibility [GGHW14, BSW16].
In [HIJ+17], Halevi et al. faced a problem similar to ours. They solved it by designing NIZKs that can be
simulated only for statements hidden in the CRS. Since there is a small number of problematic statements, it
is easy to take care of the corresponding executions of C0 and C1 using just indistinguishability obfuscation.
The solution of Halevi et al., however, compromises the reusability of the CRS and makes it grow with the
size of the statements. Since we want to keep the CRS as simple as possible, we follow a different approach.

Indistinguishability obfuscation is enough. We rely solely on indistinguishability obfuscation. In
[BCP14], Boyle, Chung and Pass showed that, if two programs have a polynomial number of differing inputs
and finding any of them is hard, then iO is enough to hide which program was obfuscated. In our application,
the number of differing inputs is of course superpolynomial, however, we notice that the result of [BCP14]
can be generalized: assume that all differing inputs have a prefix in a set S. If finding an element in S is
hard even for adversaries running in time poly

(
λ, |S|

)
, subexponentially secure iO is sufficient to hide which

program was obfuscated.
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DProgLs[Ki,EPi, σ, (τ
j
e )j 6=i,K, f ]

Hard-coded. The PPRF key Ki, the encryption program EPi, the CRS for the almost everywhere
extractable NIZK σ, the extraction trapdoors (τ je )j 6=i, a PPRF key K, an ELF f .
Input. Set of n − 1 tuples (EPj , πj)j 6=i where EPj is the encryption program of party Pj and πj is
an almost everywhere extractable NIZK proving its well-formedness.

1. ∀j 6= i : Kj ← NIZK.Extract(τ je , πj ,EPj)

2. If ∃j 6= i such that Kj = ⊥, output ⊥

3. ∀j ∈ [n] : yj ← Hash
(
(EPl)l 6=j

)
4. ∀j 6= i : (sj , rj , r

′
j)← F (Kj , yj)

5. z ← f(EP1, . . . ,EPn)

6. s← F (K, z)

7. R′ ← D(1λ; s)

8. (ηi, η
′
i)← F ′(Ki, yi)

9. (φ, pki, ci)← mkFHE.Sim1(1λ; ηi)

10. di ← mkFHE.Sim2

(
φ,D, R′, (sj , rj , r′j)j 6=i; η′i

)
11. Output di

Figure 4.8: A sketch of the unobfuscated decryption program for the lossy mode

To leverage this observation, we introduce the notion of almost everywhere extractable NIZKs. Such
NIZKs are designed so that the prefix of all the valid proofs for which the witness cannot be extracted
lies in a set S. Finding an element in S is hard even for adversaries running in time poly

(
λ, |S|

)
that are

provided with the extraction trapdoor. By using almost everywhere extractable NIZKs together with the
generalization of [BCP14], we can show that P0 and P1 are hard to distinguish despite the existence of
differing-inputs. We discuss building such NIZKs later in this overview.

4.2.4 Security Proof Challenge 2: More Differing Inputs
Decreasing the entropy of the encryption programs. At this point, we can try to prove the security
of the candidate lossy distributed sampler. The strategy is the following: using the properties of the almost
everywhere extractable NIZKs followed by an input-by-input iO argument, we show that, if the ELF is in
injective mode, the lossy-mode programs are indistinguishable from the usual ones. By switching to a lossy
ELF, we can then argue that the distinguishability advantage between the modes of the distributed sampler
can be made an arbitrarily small inverse-polynomial function.

There is only one problem that hinders this plan: beyond the differing-inputs caused by the NIZK
extraction (which are taken care by the almost everywhere extractable NIZKs), there exist other inputs
for which the lossy-mode programs have a clearly distinguishable behaviour. Consider indeed two tuples
of encryption programs (EPj)j 6=i and (EP′j)j 6=i having colliding hashes. When these tuples are used along
with normal programs for party Pi, the outputs of the protocol will be correlated: in both executions, the
programs of Pi use the same random string si (see how si is generated in Figure 4.5). If instead Pi sent
lossy-mode programs, the outputs will look independent of each other (see how R̂ is generated in Figure 4.8).

156



Even if these problematic inputs are hard to find, this time we do not use the trick by Boyle, Chung and
Pass [BCP14]. To work around the issue, we decrease the entropy of the encryption programs: we require that
they are generated using the randomness produced by a PRG with a small λ-bit seed. The almost everywhere
extractable NIZKs will guarantee that the adversary does not break this rule. On the other hand, the lossy-
mode programs will use full-entropy randomness. In this way, the total number of valid encryption programs
for the corrupted parties becomes smaller than (2λ)n−1. By adopting a subexponentially collision-resistant
hash function, we can make sure that, with overwhelming probability, there exist no collisions among these
(2λ)n−1 elements. Moreover, the digests will still be small enough to fit into the encryption programs.

This technique solves also circular dependencies between subexponentially secure primitives: the input-
by-input iO argument requires us to work with a number of hybrids that is proportional to the number of valid
encryption programs. In each of these hybrids, we need to rely on the security of multi-key FHE. In order
for the proof to go through, the size of the multi-key FHE keys therefore needs to increase logarithmically
with the number of hybrids. If we used full-entropy encryption programs, the size of the keys would be
so large that they would not even fit in the encryption programs anymore. By forcing valid encryption
programs to have low entropy, we can hybrid over only the valid programs instead of all possible encryption
programs, thereby eliminating the circular dependency. The properties of the NIZK guarantee not only that
the adversary cannot find non-valid encryption programs, but that they do not even exist.
With these challenges overcome, we prove the following:
Theorem 4.2.4 (Informal). Assuming almost everywhere extractable NIZKs, subexponential iO, subexponen-
tial multi-key FHE, subexponentially collision-resistant hash functions and regular extremely lossy functions,
the distributed sampler sketched above is lossy and programmable.

4.2.5 Building indistinguishability-preserving distributed samplers.
A lossy distributed sampler is not necessarily indistinguishability-preserving. We show, however, that the
construction described above actually is:
Theorem 4.2.5 (Informal). Assuming almost everywhere extractable NIZKs, subexponential iO, subexponen-
tial multi-key FHE, subexponentially collision-resistant hash functions and regular extremely lossy functions,
the distributed sampler sketched above is indistinguishability-preserving.

We start by considering a protocol Π that relies on a CRS sampled from the distribution D. We suppose
that Π implements a functionality F as described at the top of Figure 4.4. In particular, in the ideal world,
the CRS is simulated using a distribution D′ that outputs a trapdoor T along with the sample R.

A sketch of the proof. We use a hybrid argument beginning from the compilation of the real world using
the standard mode of our lossy distributed sampler and ending with the compilation of the ideal world using
a simulated mode (see the bottom of Figure 4.4). We prove that the compiled worlds are computationally
indistinguishable.

As a first step, we switch the distributed sampler to lossy mode. This already introduces some non-
negligible distinguishability advantage in the proof, we will explain later why this does not constitute a
problem. On the other hand, the lossy mode allows us to move to a sample space of polynomial size.

Next, we gradually change the distribution of the outputs of the distributed sampler, switching from
D to D′. The technique here is rather simple: we just rely on the security of puncturable PRFs similarly
to what we did to argue programmability. Along the way, we gradually switch from the execution of Π,
to the execution of the simulator SimΠ. In particular, there will some subhybrids in which some of the
distributed sampler outputs come from D and some from D′. We run SimΠ only when the adversary chooses
an execution where the sample comes from D′. In these cases, we can retrieve the trapdoor by using the
puncturable PRF key K and the ELF hidden in the lossy-mode programs (see Figure 4.8). Observe that,
since the sample space is small, switching from D to D′ needs only a polynomial number of subhybrids. As a
consequence, we do not need that D and D′ are subexponentially indistinguishable, nor that Π implements
F with subexponential security.
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In the last hybrid, we switch the ELF in the lossy-mode programs back to injective mode. Once again,
the operation introduces a non-negligible distinguishability advantage. However, it allows us to move to a
large sample space where all the elements are trapdoored.

The compiled games are indistinguishable. We finally argue why the non-negligible advantage in-
troduced in the first and the last hybrid does not constitute a problem: by contradiction, suppose that
there exists an adversary A that distinguishes between the initial and the final stage with non-negligible
advantage ε. By choosing sufficiently large parameters for the lossy mode of the ELF (which is used only in
the intermediate hybrids, but not in the real and the ideal world), we can ensure that the advantage of A
in the first and the last steps of the proof are both bounded by ε/4. The total advantage of A against the
compiled games would therefore be strictly smaller than ε, reaching a contradiction.

On the reusability of the CRS of our distributed samplers. It is easy to see that the CRS of
a hardness-preserving distributed sampler is always reusable across multiple concurrent executions of the
protocol. Indeed, the hardness of the search problem is not affected by the concurrent executions as the latter
are always simulatable. On the other hand, the security of an indistinguishability-preserving distributed
sampler can be affected by the concurrent executions. The construction presented in this paper, however,
does not suffer from this issue.

4.2.6 Building almost everywhere extractable NIZKs
We obtain almost everywhere extractable NIZKs in the CRS model using perfectly sound NIWIs, subexpo-
nentially secure injective one-way functions, perfectly binding commitments and perfectly correct identity-
based encryption (IBE).

Why consider distributed samplers that need a CRS? It may seem strange to have a distributed
sampler — whose purpose is to generate a CRS — in turn rely on a CRS. What is the advantage of generating
a CRS using a distributed sampler if the latter still needs a CRS? There are several reasons why a distributed
sampler using a CRS can be useful: the CRS of the distributed sampler might be reused multiple times,
allowing the production of many samples. The CRS of the distributed sampler protocol can also be simple
to generate, perhaps because it is short or because it is unstructured (i.e. a uniform string of bits).

Our Construction. The CRS consists of an IBE master public key and a one-way function challenge
v. The proofs are associated to the identity of the party that issues them. Each of them consists of a
commitment c0, an IBE encryption of the witness c1 under the party’s identity and a NIWI guaranteeing
that either c1 contains the witness or c0 contains the preimage of v. In order to extract the witness, it is
sufficient to decrypt c1.

Observe that, in all valid proofs for which extraction fails, the prefix is a commitment to the preimage
of v. Since the one-way function is injective, the number of such prefixes depends only on the size of the
randomness of the commitment scheme. As the one-way function is subexponentially secure, we can make v
hard to invert even for poly(λ, |S|)-time adversaries that have enough power to brute-force the commitment
to retrieve the hidden value. This ensures the property we need.

Why to use identity-based encryption? In many applications of almost everywhere extractable NIZKs,
we would like to argue that the programs C0 and C1 are indistinguishable even if we simulate the NIZKs of
the honest parties (clearly, in these situations, C1 will try to extract the witnesses only from the NIZKs of the
corrupted players). The issue is that the NIZK described in the previous paragraph is not simulation-almost
everywhere extractable, i.e. leaking simulated proofs may allow distinguishing between C0 and C1. On the
other hand, disclosing C1 might compromise the zero-knowledge property of the NIZKs due to the extraction
trapdoor hidden into it.
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Identity-based encryption allows us to work around the problem: to extract the witness from a NIZK
proven under the identity id, we do not need the IBE master secret key, but just the private key associated to
id. In other words, if we equip C1 only with the decryption keys associated to the identities of the corrupted
players, we are still able to simulate the proofs of the honest parties. The identities associated with the
NIZKs guarantee that no corrupted party can publish one of the simulated proofs as it was its own.

Note that some IBE schemes such as [BF01] have uniformly random public keys. If we also use a one-way
permutation to generate v, then the CRS is actually uniformly random. As such, our resulting distributed
samplers will take a uniformly random CRS, and can be used to generate any arbitrarily structured CRS.
Theorem 4.2.6 (Informal). Assuming perfectly correct IBE, perfectly binding non-interactive commitments,
perfectly sound NIWIs and subexponential OWFs, the NIZK sketched above is almost everywhere ex-
tractable.

4.2.7 CRS-less NIZKs in the Uniform Setting
All the distributed samplers we described so far make use of a CRS. The latter, needed by the NIZKs in
the construction, is short, reusable and unstructured, however, is it possible to completely remove it? For
indistinguishability-preserving distributed samplers, this is too much to hope for: if that was not the case,
we would obtain a 3-round OT protocol with active security by compiling any 2-round OT protocol with
CRS such as [PVW08]. It is known that active OT requires at least 4 rounds [HV16]. We show, however,
that, if we restrict to security against uniform adversaries, we can remove the CRS from all our primitives.
We obtain this by constructing CRS-less NIZKs that can be plugged in our distributed samplers.

NIZKs against uniform adversaries. The fact that NIZKs do not need CRSs if we restrict to security
against uniform adversaries has been known for almost two decades: the fact was proven by Barak and Pass
in [BP04] by building a CRS-less NIZK in the stand-alone model. In [BL18b], Bitansky and Lin studied
a related question. They designed CRS-less NIZKs with a weak security guarantee against non-uniform
adversaries: the number of false statements that can be proven is proportional to the non-uniformity of the
adversary. Although this notion does not imply full soundness against uniform adversaries, it is easy to see
that their constructions achieve the result. In this way, they indirectly obtain a CRS-less NIZK satisfying a
weak form of simulation-soundness [Sah99]: a uniform adversary cannot generate proofs for false statements
even if it has oracle access to the NIZK simulator that can be queried only with true statements (in the
standard definition of simulation soundness, the simulator can be queried even with false statements).

Beyond these works, the topic remains rather unexplored. In this paper, we show how to construct CRS-
less NIZKs achieving full simulation-soundness [Sah99], simulation extractability and almost-everywhere
extractability against uniform adversaries. All our constructions rely on the same trick: in order to simulate
a proof, we need to use a trapdoor. Such trapdoor will be infeasible to compute for every uniform adversary
but not for the simulator as it will be non-uniform.

Uniform-DDH and uniform-LWE. We start by introducing natural variations of the DDH and LWE
assumptions that we believe to hold against uniform adversaries.

Consider a uniform deterministic algorithm DDHGen that outputs the description of a cyclic group G
along with two elements g, h ∈ G such that no uniform adversary can find the value α such that h = gα. A
heuristic instantiation of this algorithm is to use a SHA hash function, or the digits of π, to generate g and h.
The uniform-DDH assumption states that no uniform adversary can distinguish between pairs (gr, hr) and
pairs (gr, hs) where r and s are uniformly random elements. Clearly, the assumption cannot hold against
non-uniform adversaries: a non-uniform adversary can receive α as part of its non-uniform advice, at that
point, distinguishing is trivial. Even uniform quantum adversaries can trivially distinguish by recovering
α using Shor’s algorithm. We however believe that it is possible to instantiate the assumption so that all
uniform, classical PPT adversaries have subexponentially small advantage.

The uniform-LWE assumption follows a similar blueprint: we use a uniform deterministic algorithm
LWEGen to generate the matrix A ∈ Zm×nq describing a lattice. We then assume that no uniform PPT
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adversary can distinguish Aᵀ · s + x (where s is uniform in Znq and x is a short vector in Zmq ) from a
random element in Zmq . Once again, we cannot hope to achieve security against non-uniform adversaries:
if they receive a small vector u such that A · u = 0 as part of their non-uniform advice, they can easily
break the assumption. We however believe that every uniform, classical or quantum PPT adversary has a
subexponentially small advantage.

The first simulation-sound NIZKs.

We obtain simulation-sound NIZKs without CRS using two different approaches. We now describe the first
one.

Challengeless one-way functions. The first NIZK makes use of challengeless one-way functions
(COWFs): a one-way function in which the challenge is deterministically generated by a uniform algorithm.
The guarantee is that no uniform PPT adversary can find a preimage of the challenge.

We actually need two COWFs that are independently hard: finding preimages for any of them remains
hard even when we are given a preimage for the other one. Uniform-DDH and uniform-LWE easily give a
pair of independently hard one-way functions: thanks to the subexponential security of the primitive, we can
make sure that, for classical adversaries, breaking uniform-DDH is strictly harder than uniform-LWE (this
is achieved by making an appropriate choice of the parameters of the assumptions). On the other hand, in
a post-quantum world, uniform-DDH is broken, while uniform-LWE retains its security. If breaking any of
the challengeless one-way functions allows an adversary to break the other one, one of these two facts would
be contradicted. This kind of trick was used before in [KK19, KNYY21, LPS17].

The first approach. The construction follows the blueprint of [BP04]. The proof consists of two com-
mitments c0 and c1 along with a signature and a CRS-less NIWI [BOV03, GOS06a, GOS06b]. The NIZKs
prove that either the statement lies in the language or one of the commitments hides a preimage for one of
the independently hard challengeless one-way functions COWF0 and COWF1. These preimages will be used
as trapdoors.

In order to achieve simulation-soundness, we need to ensure that the proof is non-malleable. We therefore
generate c0 and c1 using a non-interactive CCA commitment without CRS [KS17, LPS17, BL18b, KK19,
GKLW21]: each commitment is associated with a tag. The primitive guarantees that, given a commitment,
no adversary can derive a commitment to a correlated value under a different tag. In our NIZK, similarly to
[GO07], the tag will be a one-time signature verification key. Such key will be used to sign the proof. This
ensures that, in order to produce a NIZK for a false statement, the adversary cannot reuse the commitments
in the simulated proofs: it needs to at least change the tag (otherwise, it would need to forge a signature).
The CCA security of the commitments guarantees the hardness of this task. Therefore, if the adversary
manages to prove a false statement is because it discovered one of the trapdoors.

Why do we need two challengeless one-way functions? The reason is that we need to argue that the
NIWIs in the simulated proofs leak no information about the trapdoors. When the statement for a simulated
proof lies in the language, it is guaranteed that the NIWI does not leak the trapdoor. If that was not the
case, by witness indistinguishability, the trapdoor would have been leaked even if the NIWI was generated
using the witness for our statement. This contradicts the fact that the trapdoor is hard to compute. What
instead if the statement does not lie in the language? In this case, the NIWI does not allow us to tell which
trapdoor was used for its generation, however, it might leak some generic information about them, e.g. the
minimal trapdoor according to the lexicographical order.

Using two independently hard, challengeless one-way function, we avoid this problem: by the independent
hardness, if we use the COWF0 trapdoors for the simulated proofs, the NIWIs cannot leak any COWF1

trapdoor and vice-versa. By witness indistinguishability, we conclude that the NIWIs do not leak any of the
trapdoors.
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Theorem 4.2.7 (Informal). Assuming subexponential independently secure COWFs, non-interactive CCA-
commitments without CRS, subexponential CRS-less NIWIs and strong one-time signatures, the CRS-less
NIZK sketched above is simulation-sound against uniform adversaries.

The second simulation-sound NIZK.

We describe the second approach to build simulation-sound NIZKs without CRS.

Labelled, challengeless one-way functions (LOWF). Our second simulation-sound NIZK makes in-
stead use of labelled, challengeless one-way functions CLOWF: on input any label id, a uniform algorithm
deterministically generates a one-way function challenge. The primitive guarantees that no uniform PPT
adversary can invert any challenge even given the preimages associated with some of the other labels. A
heuristic instantiation of this primitive can use a SHA hash function to generate the verification key for a
deterministic signature scheme. In this case, the preimage associated with a label id consists of a signature
on id.

The second approach. Building simulation-sound NIZKs with the second approach is perhaps even
easier: each proof consists of a commitment c, a CRS-less NIWI, a signature and the relative verification
key vk. The NIWI is used to prove that either the statement belongs to the language or c hides a preimage
for CLOWF where the label is vk. Such preimage acts as a trapdoor.

We use a signature over the whole proof to ensure that, if the adversary manages to prove a false
statement, it uses a fresh verification key (otherwise, it would have succeeded in forging a signature). That
means that the adversary needs to find a preimage relative to a fresh label of CLOWF. The trapdoors used
in the simulated proof do not help in this task. We can therefore achieve simulation-soundness even with
malleable commitments.
Theorem 4.2.8 (Informal). Assuming subexponential LOWF, perfectly binding non-interactive commitments,
CRS-less NIWIs and strong one-time signatures, the CRS-less NIZK sketched above is simulation-sound
against uniform adversaries.

CRS-less simulation-extractable NIZK.

In order to build simulation-extractable NIZKs, we introduce CRS-less non-interactive extractable commit-
ment schemes. Observe that the primitive can exist only if we restrict to security against uniform adversaries.
We build two schemes. The first one is based on uniform-DDH, the second one on uniform-LWE. A com-
mitment consists of an encryption of the value using the public keys deterministically produced by either
DDHGen or LWEGen. In the first case, we use ElGamal, in the second case, we use dual-LWE. To extract the
value, it is sufficient to perform a decryption (the extractor will be a non-uniform algorithm). The operation
is however infeasible for the adversary as the secret key is hard to compute in uniform polynomial-time.

In order to obtain a simulation-extractable NIZK, we simply generate an extractable commitment c to
the witness for the statement we want to prove. We then use a simulation-sound NIZK to prove that c is
indeed what we claim it to be.
Theorem 4.2.9 (Informal). Assuming CRS-less simulation-sound NIZKs and subexponential CRS-less non-
interactive extractable commitments, the CRS-less NIZK sketched above is simulation-extractable against
uniform adversaries.

CRS-less almost everywhere extractable NIZK.

We finally present a CRS-less almost everywhere extractable NIZK with security against uniform adversaries.
Differently from the construction described in Section 4.2.2, this NIZK will use a single extraction trapdoor
for every prover’s identity. On the other hand, the scheme will remain almost everywhere extractable even if
we provide oracle access to the zero-knowledge simulator (we call the property simulation-almost everywhere
extractability). This ensures that the obfuscated programs P0 and P1 remain indistinguishable even if the
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proofs of the honest parties are simulated (we recall that P0 is a program that verifies the NIZKs proving
the well-formedness of its inputs, while P1 instead tries to extract the witnesses from them).

Independently secure labelled one-way functions and extractable commitments. The construc-
tion makes use of a labelled challengeless one-way function CLOWF and a non-interactive extractable com-
mitment. The two primitives need to be independently secure: they need to retain their security properties
even when we leak the other primitive’s trapdoor. We can for instance ensure this using the same trick we
adopted for simulation-sound NIZKs: we use a post-quantum extractable commitment (which can be ob-
tained from uniform-LWE) and a quantumly-broken labelled, challengeless one-way function (heuristically,
we can obtain it from any DLOG-based deterministic signature).

The reason why we need independently secure primitives is that almost everywhere extractability always
requires that the simulation trapdoor (i.e. the trapdoor for CLOWF) is hard to compute in uniform poly-
nomial time even if we leak the extraction trapdoor (i.e. the trapdoor for the extractable commitment).
On the other hand, in our construction, the proof of zero-knowledge would require the symmetric relation.
Independent security allows us to satisfy both conditions simultaneously.

The simulation-almost everywhere extractable NIZK without CRS. A proof consists of two com-
mitments c0 and c1, where c1 is extractable, along with a CRS-less NIWI. The latter proves that either c1
hides a witness for the statement we want to prove or c0 hides a preimage for CLOWF where the label is the
identity of the prover. In all the proofs where extraction fails, c0 will therefore satisfy this second condition.

We select CLOWF so that the preimage for any given label is unique. In this way, the number of prefixes of
problematic NIZKs for a given prover identity depends only on the size of the randomness of the commitment
scheme. Since CLOWF is subexponentially secure, we can ensure that finding the right CLOWF preimage is
infeasible even for poly

(
λ, |S|

)
-time adversaries (S denotes the set of problematic prefixes) that have enough

computational power to recover the value hidden in c0. Finding elements in S is therefore hard even for
poly

(
λ, |S|

)
-time algorithms. Learning simulated proofs under other provers’ indentities does not help the

adversary in the task.
Theorem 4.2.10 (Informal). Assume the existence of a subexponential injective LOWF and a CRS-less
non-interactive extractable commitment that are independently secure. Assume perfectly binding non-
interactive commitments and CRS-less NIWIs. Then, the CRS-less NIZK sketched above is simulation-almost
everywhere extractable against uniform adversaries.

4.3 Notation and Preliminaries
In this section, we formalise the notation and recall the known results about distributed samplers.

Basic notation. We denote the security parameter by λ. For any n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}. For any binary string x and integer `, Trunc`(x) denotes the prefix of x consisting of its first `
bits. Moreover, for any integers `0 < `1, we use Trunc`1`0(x) to denote the substring of x consisting of the bits
from the `0-th position to the `1-th one. Given any NP relation R, we denote the corresponding language
by LR.

Algorithm execution. For any deterministic algorithm A and input x, we use the expression a← A(x)
to assign the output of the algorithm A on input x to the variable a. When A is probabilistic, we instead
use a $← A(x). Finally, if A is randomised, we use a← A(x; r) to mean that a is assigned the output of A
on input x and randomness r. If x is variable, we use a ← x to assign the value of x to a. If X is a set,
instead, we use a $← X to mean that a is assigned a value sampled from X uniformly at random. If A and O
are algorithms, for any x and y, we use AO(y,·)(x) to denote the value output by A on input x while having
unbounded oracle access to O(y, ·). In other words, at any point in time, A can send values z to an oracle,
which replies with O(y, z). We use the term efficient distribution to denote a uniform PPT algorithm taking
only the security parameter as input.
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Asymptotic behaviour. We use negl(λ) (resp. nonegl(λ)) to denote a generic negligible (resp. non-
negligible) function in the security parameter. Similarly, we use poly(X1, . . . , Xn) to denote a generic function
that is upper-bounded by a polynomial in the given variables X1, . . . , XN . Given two functions S0(λ) and
S1(λ), we say that S0(λ)� S1(λ) if S0(λ) is a poly

(
λ, S1(λ)

)
function but S1(λ) is not poly

(
λ, S0(λ)

)
.

Uniform vs non-uniform adversaries. We recall that a non-uniform algorithm consists of a randomised
Turing machine that, at the beginning of its execution, receives a polynomial-size advice string, whose value
depends only on the security parameter. A uniform algorithm is instead a randomised Turing machine that
receives no such advice string. Throughout the paper, we use AClass to denote either the class of uniform
algorithms or the class of non-uniform algorithms. Observe that the latter is strictly larger than the former.

Multiparty computation. In the paper, we deal with multiparty protocols. We always assume the
existence of authenticated point-to-point channels along with an authenticated broadcast medium. We often
denote the i-th party by Pi. We also assume that each party is associated with a unique identity id known
to all the other players. We work with static corruption and we denote the set of honest parties by H. We
say that a CRS is unstructured if it is computationally indistinguishable from a uniformly random string of
a given length.

Subexponential security. We say that a primitive is subexponentially secure if there exists e > 0 such
that the advantage of every adversary running in poly

(
2λ

e) time in the relative security game is asymptotically
smaller than 2−λ

e . In this appendix, we recall security definitions and basic results used in this work.

4.3.1 One-Way Functions
We recall the definition of one-way function (OWF): a function that can be efficiently computed but hard
to invert on random instances.
Definition 4.3.1 (One-way function). A one-way function is a pair of uniform PPT algorithms (Gen,OWF)
with the following syntax:

• Gen is randomised, takes as input the security parameter 1λ and outputs a pair (v, u).

• OWF is deterministic and takes as input the security parameter 1λ and a value u. The output is a
value v.

We require the following properties

• (Correctness). For every λ ∈ N, we have

Pr
[
OWF(1λ, u) = v

∣∣∣(v, u)
$← Gen(1λ)

]
= 1.

• (Security). For every PPT adversary A, we have

Pr
[
OWF(1λ, u′) = v

∣∣∣(v, u)
$← Gen(1λ), u′

$← A(1λ, v)
]

= negl(λ).

We say that the the one-way function is injective if

Pr
[
∃u′ 6= u OWF(1λ, u′) = v

∣∣∣(v, u)
$← Gen(1λ)

]
= 0.

One-way functions, including subexponentially secure ones, can be built using well studied assumptions.
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4.3.2 Puncturable PRFs
We recall now the definition of puncturable PRF [KPTZ13, BW13, BGI14]. As for a standard PRF, it consists
of a keyed functions whose outputs are indistinguishable from random as long as the key remains secret. The
primitive, however, satisfies an additional property: it is possible to generate punctured keys. The latter
permit evaluating the PRF in any point of its domain except for the punctured position. Furthermore, even
if the punctured key is disclosed, the value of the PRF at the punctured position remains indistinguishable
from random.
Definition 4.3.2 (Puncturable PRF). Let p(λ) and q(λ) be polynomial functions. A puncturable PRF with
input size p(λ) and output size q(λ) is a pair of uniform PPT algorithms (Gen, F,Punct) with the following
syntax:

• Gen is randomised, takes as input the security parameter 1λ and outputs a key K.

• F is deterministic and takes as input a key K and a value x ∈ {0, 1}p(λ). The output is a pseudorandom
string y ∈ {0, 1}q(λ).

• Punct is deterministic and takes as input a key K and a value x ∈ {0, 1}p(λ). The output is a punctured
key K∗.

We require the following properties.

• (Correctness). For every pair of distinct values x and x′ in {0, 1}p(λ), we have

Pr
[
F (K,x′) = F (K∗, x′)

∣∣∣K $← Gen(1λ), K∗ ← Punct(K,x)
]

= 1.

• (Security). For every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


A2(ψ,K∗, yb) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
$← {0, 1}

K
$← Gen(1λ)

(x, ψ)
$← A1(1λ)

K∗ ← Punct(K,x)

y0 ← F (K,x)

y1
$← {0, 1}q(λ)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

Puncturable PRFs, even with subexponential security, can be easily constructed using one-way functions.

4.3.3 Hash Functions
We recall now the definition of collision resistant hash function. Essentially, the latter consists of a keyed
function for which it is hard to find pairs of different elements that are mapped to the same value. Security
relies on the unpredictability of the key. It is possible to build subexponentially secure collision resistant
hash functions from well studied assumptions.
Definition 4.3.3 (Collision resistant hash function). Let p(λ) and t(λ) be polynomial functions. A hash
function with input size p(λ) and digest size t(λ) is a pair of uniform PPT algorithms (Gen,Hash) with the
following syntax:

• Gen is randomised, takes as input the security parameter 1λ and outputs an hash key hk.

• Hash is deterministic and takes as input a hash key hk and a value x ∈ {0, 1}p(λ). The output is a
digest y ∈ {0, 1}t(λ).
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We say that the hash function is collision resistant if, for PPT adversary A, we have∣∣∣∣∣Pr

[
x0 6= x1

Hash(hk, x0) = Hash(hk, x1)

∣∣∣∣∣hk
$← Gen(1λ)

(x0, x1)
$← A(1λ, hk)

]∣∣∣∣∣ = negl(λ).

Applied cryptography makes often use of a keyless version of the above primitive for which finding
collisions is still believed to be hard. We formalise the definition below. We highlight that this primitive can
hope to achieve security only against uniform adversaries. Indeed, since there is no randomness involved in
the construction, a non-uniform adversary can be given a collision as part of its advice string.
Definition 4.3.4 (Keyless collision resistant hash function). Let p(λ) and t(λ) be polynomial functions. A
keyless hash function with input size p(λ) and digest size t(λ) is a uniform deterministic polynomial time
algorithm KHash that takes as input the security parameter 1λ and a value x ∈ {0, 1}p(λ). The output is a
digest y ∈ {0, 1}t(λ).

We say that the keyless hash function is collision resistant if, for every uniform PPT adversary A, we
have ∣∣∣Pr

[
x0 6= x1,KHash(1λ, x0) = KHash(1λ, x1)

∣∣∣(x0, x1)
$← A(1λ)

]∣∣∣ = negl(λ).

4.3.4 Commitments
In this subsection, we recall definitions of non-interactive commitments. A non-interactive commitment
scheme is a primitive that allows encoding a message m in a string c, called the commitment. By itself,
c hides the value of m, so it can be distributed to other parties without fear of revealing its secret. At a
later point in time, the commitment can however be opened, disclosing the value hidden into it. The scheme
guarantees the hardness of opening c to any value other than m. In other words, after the commitment is
opened, the parties can be sure that who generated c had been already committed to revealing m since the
time c was sent.

In this paper, we will make use of perfectly binding, computationally hiding non-interactive schemes.
In particular, that means that the value hidden in the commitment remains secret only to computationally
bounded adversaries. Furthermore, the commitment c uniquely determines the value hidden into it. Such
schemes can be built, even with subexponential security, based on well-studied assumptions.
Definition 4.3.5 (Non-interactive commitment scheme). Let p(λ) be a polynomial function. A non-interactive
commitment scheme with message size p(λ) is a uniform PPT algorithm Com that takes as input the security
parameter 1λ and a message m ∈ {0, 1}p(λ). The output is a commitment c.

We say that the scheme is perfectly binding if, for every λ ∈ N, there exist no pairs (m0, r0) and (m1, r1)
such that m0 6= m1 and Com(1λ,m0; r0) = Com(1λ,m1; r1).

We say that the scheme is computationally hiding if, for every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣Pr

A2(ψ, c) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(m0,m1, ψ)
$← A1(1λ)

c
$← Com(1λ,mb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

We also recall the definition of computation-enabled CCA commitment [KS17] [LPS17, BL18b, KK19,
GKLW21]. This is a particular type of commitment that satisfies non-malleability. That means that given a
commitment c hiding a value m, we are not able to derive another commitment c′ that hides some value m′
correlated to m. This property is formulated by augmenting the commitment algorithm with tags. Formally,
we require that, if a value m is committed along with a tag id, m remains hidden even if the adversary has
access to an inefficient oracle that extracts the values from the queried commitments. Clearly, the oracle
accepts only commitments that use tags different from id.

Obtaining non-interactive non-malleable commitments with large tag space without relying on setups is
not an easy task. For this reason, in this paper, we rely on constructions of this kind that achieve security only
against uniform adversaries. In particular, the primitive we are interested in satisfies computation-enabled
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CCA-Hiding Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b $← {0, 1}

2. Activate A with 1λ.

3. Receive a Turing machine P from the adversary.

4. Run P on no input for at most t(2λe) steps. If P does not terminate before that, provide A with
⊥, otherwise, provide it with the first s(λ) bits of the output.

5. Receive a tag îd from the adversary.

Value: This procedure can be queried multiple times, both before and after choosing the challenge.
Upon receiving pairs (id, c) where id 6= îd, the challenger replies with Val(id, c).

Challenge: This procedure can be queried only once. The adversary provides m0,m1 ∈ {0, 1}p(λ).
The challenger replies with c $← CCACom(1λ, îd,mb).

Win: The adversary wins if it guesses b.

Figure 4.9: CCA-hiding game

CCA security, meaning that, at the beginning of the game we described above, the uniform adversary is
allowed to query a possibly inefficient, randomised Turing machine with no input. The challenger provides
the adversary with the result of the machine execution.
Definition 4.3.6 (Computation-enabled CCA commitment). Let p(λ) and q(λ) be polynomial functions, let
e > 0. A e-computation enabled CCA commitment scheme with message size p(λ) and tag size q(λ) is a pair
of uniform algorithms (CCACom,Val) with the following syntax:

• CCACom is PPT and takes as input the security parameter 1λ, a tag id ∈ {0, 1}q(λ) and a message
m ∈ {0, 1}p(λ). The output is a commitment c.

• Val is deterministic and inefficient. It takes as input a label id and a commitment c and outputs either
a message m ∈ {0, 1}p(λ) or ⊥.

We require the following properties.

• (Correctness). For every λ ∈ N, id ∈ {0, 1}q(λ) and m ∈ {0, 1}p(λ), we have

Pr
[
Val(id, c) = m

∣∣∣c $← CCACom(1λ, id,m)
]

= 1.

• (CCA-Hiding). For every polynomials t(λ) and s(λ), no uniform PPT adversary A can win the game
in Figure 4.9 with non-negligible advantage.

4.3.5 Strong One-Time Signatures
We recall here the definition of strong one-time signature. Informally, this consists in a signing scheme for
which it is hard to craft forgeries if we are given access to just one signature. The scheme is strong in the
sense that, given a signature s for a message m, it is even hard to find another signature s′ for m. Strong
one-time signatures can be built from one-way functions.
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Definition 4.3.7 (Strong one-time signature). Let p(λ) be a polynomial function. A strong one-time signature
is a triple of uniform PPT algorithms (Gen,Sign,Verify) with the following syntax:

• Gen is randomised and takes as input the security parameter 1λ. The output is a key pair (vk, sk).

• Sign is randomised and takes as input a secret key sk and a message m ∈ {0, 1}p(λ). The output is a
signature s.

• Verify is deterministic and takes as input a verification key vk, a message m ∈ {0, 1}p(λ) and a signature
s. The output is a bit b ∈ {0, 1}.

We require the following properties.
• (Correctness). For every m ∈ {0, 1}p(λ), we have

Pr
[
Verify(vk,m, s) = 1

∣∣∣(vk, sk)
$← Gen(1λ), s

$← Sign(sk,m)
]

= 1.

• (Security). For every pair of PPT adversaries (A1,A2), we have

Pr


(s,m) 6= (ŝ, m̂)

Verify(vk,m, s) = 1

∣∣∣∣∣∣∣∣∣∣∣

(vk, sk)
$← Gen(1λ)

(m̂, ψ)
$← A1(1λ, vk)

ŝ
$← Sign(sk, m̂)

(s,m)
$← A2(ψ, ŝ)

 = negl(λ).

4.3.6 Non-Interactive Witness Indistinguishability
We recall the definition of non-interactive witness-indistinguishable proof (NIWI). Essentially, this consists
of a construction specifying how to prove that a given statement x belong to a language using a single
message. In order to be efficient, the algorithm that generates the proof needs to receive a witness for x as
input. The primitive does not guarantee that the proof keeps the witness secret. It achieves, however, a
weaker form of security stating that if there are multiple witnesses for the same statement x, the proof does
not disclosed which witness was used for its generation.

It is possible to build subexponentially secure NIWI proofs without setups from various assump-
tions, specifically, DLIN [GOS06b, GOS06a], derandomisation [BOV03] and indistinguishability obfuscation
[BP15].
Definition 4.3.8 (NIWI proof). Let R be an NP relation. A NIWI proof is a pair of uniform PPT algorithms
(Prove,Verify) with the following syntax:

• Prove is randomised and takes as input the security parameter 1λ, a statement x and a witness w. The
output is a proof π.

• Verify is deterministic and takes as input a proof π and a statement x. The output is a bit b ∈ {0, 1}.
We require the following properties.

• (Completeness). There exists a negligible function negl(λ) such that, for every (x,w) ∈ R, we have

Pr
[
Verify(π, x) = 1

∣∣∣π $← Prove(1λ, x, w)
]

= 1− negl(λ).

• (Perfect Soundness). If x 6∈ LR, there exists no π such that Verify(π, x) = 1.

• (Witness-Indistinguishability). For every pair of PPT adversaries (A1,A2), we have∣∣∣∣∣∣∣∣∣∣
Pr

A2(ψ, π) = b

∣∣∣∣∣∣∣∣∣∣
b

$← {0, 1}

(x,w0, w1, ψ)
$← A1(1λ)

π
$← Prove(1λ, x, wb)

If (x,w0) 6∈ R or (x,w1) 6∈ R : π ← ⊥

− 1

2

∣∣∣∣∣∣∣∣∣∣
= negl(λ).
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The IND-ID-CPA Game
Initialisation: This procedure is run only once, at the beginning of the game.
1. b $← {0, 1}
2. Q← ∅
3. îd← ⊥
4. (mpk,msk)

$← Setup(1λ)

5. Activate the adversary with 1λ and mpk.
Key: This procedure can be queried multiple time, both before and after choosing the challenge.
On input identities id ∈ {0, 1}q(λ) such that id 6= îd, the challenger adds id to Q and replies with
Extract(msk, id).

Challenge: This procedure can be queried only once. The adversary provides m0,m1 ∈ {0, 1}p(λ) and
îd ∈ {0, 1}q(λ) \Q. The challenger answers with Enc(mpk, îd,mb).

Win: The adversary wins if it guesses b.

Figure 4.10: The IND-ID-CPA game

4.3.7 Identity-Based Encryption
We recall the definition of identity-based encryption (IBE) [Sha84, BF01]. An IBE scheme is a public-key
encryption scheme that is augmented with an access policy: each ciphertext and each secret key is associated
with an identity. It is possible to decrypt only if two identities match. Holding keys associated with other
identities gives no help in retrieving information about the plaintext.
Definition 4.3.9 (Identity-based encryption). Let p(λ) and q(λ) be polynomial functions. An identity-based
encryption scheme (IBE) with message size p(λ) and identity size q(λ) is a tuple of uniform PPT algorithms
(Setup,Extract,Enc,Dec) with the following syntax:

• Setup is randomised and takes as input the security parameter 1λ. The output is a key pair (mpk,msk).

• Extract is randomised and takes as input a master secret key msk and an identity id ∈ {0, 1}q(λ). The
output is a secret-key sk.

• Enc is randomised and takes as input a master public key mpk, an identity id ∈ {0, 1}q(λ) and a message
m ∈ {0, 1}p(λ). The output is a ciphertext c.

• Dec is deterministic and takes as input a secret-key sk and a ciphertext c. The output is a message m
or ⊥.

We require the following properties.
• (Perfect Correctness). For every id ∈ {0, 1}q(λ) and m ∈ {0, 1}p(λ),

Pr

Dec(sk, c) = m

∣∣∣∣∣∣∣∣
(mpk,msk)

$← Setup(1λ)

c
$← Enc(mpk, id,m)

sk
$← Extract(msk, id)

 = 1.

• (IND-ID-CPA security). No PPT adversary can win the game in Figure 4.10 with non-negligible
advantage.

Subexponentially secure IBE schemes can be built in the plain model using a large variety of assumptions
[CHK03, BB04, Wat05, Gen06, ABB10].
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4.3.8 Indistinguishability Obfuscation
We recall the definition of indistinguishability obfuscation [BGI+01, GGH+13]. An indistinguishability
obfuscation is an algorithm that modifies a circuit without altering its input-output behaviour. The result
is however so “scrambled” that it is hard to tell what the original circuit looked like. In this paper, we use
the terms “circuit” and “program” interchangeably.
Definition 4.3.10 (Indistinguishability obfuscator). An indistinguishability obfuscator is a uniform PPT
algorithm iO that takes as input the security parameter 1λ and a circuit C. The output is an obfuscate
program C̃. We require the following properties.

• (Perfect Correctness). For every circuit C and input x, we have

Pr
[
C(x) = C̃(x)

∣∣∣C̃ $← iO(1λ, C)
]

= 1.

• (Security). For every PPT adversary A and sampler Samp outputting same-size circuits C0 and C1

such that ∀x : C0(x) = C1(x) along with auxiliary information aux, we have∣∣∣∣∣∣∣∣Pr

A(1λ, C̃, C0, C1, aux) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(C0, C1, aux)
$← Samp(1λ)

C̃
$← iO(1λ, Cb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

Although the initial obfuscation constructions were based on non-standard assumptions [GGH+13], the
field has recently shown significant progress. State-of-the-art obfuscators can indeed be based on the subex-
ponential hardness of well-founded problems [JLS21, JLS22]. Notice that the subexponential security of
obfuscation is a common assumption in cryptography [CLTV15, DHRW16, HIJ+17].

In this paper, we will use indistinguishability obfuscators satisfying a particular property called injectivity.
In other words, it is guaranteed that the obfuscation of distinct circuits will never collide. It is easy to obtain
this property by appending a perfectly binding commitment of the unobfuscated circuit to the obfuscated
program [CCK+22].
Definition 4.3.11 (Injective indistinguishability obfuscator). We say that an indistinguishability obfuscator iO
is injective if, for every λ ∈ N, there exist no pairs (C0, r0) and (C1, r1) such that C0 6= C1 but iO(1λ, C0; r0) =
iO(1λ, C1; r1).

4.3.9 Multi-Key FHE
We recall the definition of multi-key fully homomorphic encryption [LTV12, CM15] [MW16]. As standard
FHE, multi-key FHE scheme is a public key encryption scheme that allows homomorphically applying func-
tions on encrypted values deriving encryptions of the outputs. The evaluation of the function is performed
locally and no information about the plaintexts is revealed in the process. The big advantage of multi-key
FHE is that, while standard FHE allows performing operations only between ciphertexts encrypted under
the same public key, multi-key FHE suffers from no such restriction: we can evaluate functions on inputs
encrypted under different keys, obtaining an encryption of the output under a “joint key”. In order to decrypt
the latter, the parties need to collaborate: each player will locally compute a partial decryption using its
own private key. By pooling together the partial plaintexts, everybody can retrieve the result.

Subexponentially secure multi-key FHE without CRS can be built based on LWE and DSPR [AJJM20],
or obfuscation and DDH [DHRW16]. In this paper, we rely on the definition of [AJJM20].
Definition 4.3.12 (Multi-key FHE). An multi-key fully homomorphic encryption scheme is a tuple of uniform
PPT algorithms (Gen,Enc,Eval,PartDec,FinDec) with the following syntax:

• Gen is randomised and takes as input the security parameter 1λ. The output is a key pair (pk, sk).

• Enc is randomised and takes as input a public key pk and a message m. The output is a ciphertext c.
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• Eval is deterministic and takes as input a function f and n pairs (pki, ci) where n is the number of
inputs of f . The output is a ciphertext C encrypted under the joint public key (pk1, . . . , pkn).

• PartDec is randomised and takes as input a ciphertext C, n public keys pk1, . . . , pkn for some n ∈ N,
an index i ∈ [n] and a secret key sk. The output is a partial decryption d.

• FinDec is deterministic and takes as input n partial decryptions d1, . . . , dn for some n ∈ N. The output
is a message m or ⊥.

We require the following properties.
• (Correctness). For every function f with n inputs and values x1, . . . , xn, we have

Pr


m = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ [n] : (pki, ski)
$← Gen(1λ)

∀i ∈ [n] : ci
$← Enc(pki, xi)

C ← Eval(f, pk1, c1, . . . , pkn, cn)

∀i ∈ [n] : di
$← PartDec(C, pk1, . . . , pkn, i, ski)

m← FinDec(d1, . . . , dn)


= 1.

• (Reusable Semi-Malicious Security). There exists uniform PPT simulators Sim1 and Sim2 such
that no PPT adversary A can win the game in Figure 4.11 with non-negligible advantage.

4.3.10 Extremely Lossy Functions
We recall the definition of extremely lossy function (ELF) [Zha16]. An ELF is a function f parametrised by
two values M and r. The former denotes the cardinality of its domain, whereas r denotes an upper bound
on the size of the image. When M = r, the function is guaranteed to be injective. When r 6= M , we say
that the ELF is in lossy mode. The primitive ensures that, by choosing a sufficiently large poly(logM) value
r, the advantage in distinguishing between an injective ELF and a lossy ELF can be made an arbitrarily
small inverse polynomial function in logM . Extremely lossy functions can be built based on the exponential
hardness of DDH over elliptic curves [Zha16].
Definition 4.3.13 (Extremely lossy function). An extremely lossy function (ELF) consists of a uniform PPT
algorithm Gen that takes as input two integers M and r. The output is the description of a function f with
domain [M ]. The primitive uses logM as security parameter. We require the following properties.

• f is computable in poly log(M) time and the running time is independent of r.

• If r = M , Pr
[
∃x 6= y s.t. f(x) = f(y)

∣∣f $← Gen(M,M)
]

= negl(logM).

• There every r ∈ [M ], Pr
[∣∣f([M ]

)∣∣ ≥ r∣∣∣f $← Gen(M, r)
]

= negl(logM).

• For every polynomial p and inverse polynomial function δ, there exists a polynomial q such that, for
every adversary A running in time at most p(logM), and r ≥ q(logM), we have∣∣∣∣∣∣∣∣Pr

A(M, r, fb) = 1

∣∣∣∣∣∣∣∣
b

$← {0, 1}

f1
$← Gen(M, r)

f0
$← Gen(M,M)

− 1

2

∣∣∣∣∣∣∣∣ ≤ δ(logM).

In the constructions in this paper, logM will be both poly(λ) and Ω(λ). Therefore, every negligible
function in logM will also be negligible in λ (and viceversa). Similarly, every polynomial function in logM
will also be polynomial in λ (and viceversa).

We now recall the definition of regular ELF [Zha16]. Informally, an ELF is regular if, by applying the
function on a random domain element, we hit all the elements in the image with at least inverse-polynomial
probability in r and logM . Regular ELFs can be built based on exponential DDH [Zha16].
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The Multi-Key FHE Security Game
Initialisation: This procedure is run only once, at the beginning.
1. b $← {0, 1}
2. Activate the adversary A with 1λ

3. Receive H ⊆ [n] from the adversary along with (xi)i∈H .
4. ∀i ∈ H : (pk0

i , sk
0
i )

$← Gen(1λ, i)

5. ∀i ∈ H : c0i
$← Enc(pk0

i , xi)

6.
(
φ, (pk1

i , c
1
i )i∈H

)
$← Sim1(1λ, H)

7. ∀i ∈ H : (pki, ci)← (pkbi , c
b
i )

8. Provide A with (pki, ci)i∈H .
9. Receive (xj , rj , r

′
j)j 6∈H from A

10. ∀j 6∈ H : (pkj , skj)← Gen(1λ, j; rj)

11. ∀j 6∈ H : cj ← Enc(pkj , xj ; r
′
j)

Decryption: This procedure can be queried multiple times. On input a function f with n inputs,
compute the following.
1. C ← Eval(f, pk1, c1, . . . , pkn, cn)

2. y ← f(x1, . . . , xn)

3. ∀i ∈ H : d0
i

$← PartDec(C, pk1, . . . , pkn, i, sk
0
i )

4.
(
φ′, (d1

i )i∈H
)

$← Sim2

(
φ, f, y, (xj , rj , r

′
j)j 6∈H

)
5. φ← φ′

6. Provide (dbi )i∈H to A
Win: The adversary wins if it guesses b.

Figure 4.11: The multi-key FHE security game
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Definition 4.3.14 (Regular ELF). An ELF is regular if there exists s = poly(logM, r) such that, except with
negligible probability over f $← Gen(M, r), for every y ∈ f([M ]), we have

Pr
x

[
f(x) = y

∣∣x $← [M ]
]
≥ 1

s(logM, r)

where Pr
x

is a probability taken over the randomness of x.

We also recall the definition of strongly efficiently enumerable ELF [Zha16]. This consists an ELF in
which it is possible to reconstruct the image in poly(logM, r) time.
Definition 4.3.15 (Strongly efficiently enumerable ELF). An ELF is strongly efficiently enumerable if there
exists a randomise algorithm Enum running in poly(logM, r) time such that, for every r ∈ [M ],

Pr
[
S 6= f

(
[M ]

)∣∣∣f $← Gen(M, r), S
$← Enum(M, 1r, f)

]
≤ negl(logM).

It easy to show that every regular ELF is strongly efficiently enumerable [Zha16].
Theorem 4.3.16 ([Zha16]). A regular ELF is strongly efficiently enumerable.

4.3.11 Distributed Samplers
Distributed samplers [ASY22] are a powerful primitive allowing n parties to securely generate a sample from a
fixed distribution D(1λ) using a single round of interaction. A natural application of these constructions is the
distributed generation of (structured or unstructured) common reference strings in one round. In [ASY22],
the authors showed that distributed samplers can also be used to build public-key PCFs [OSY21, ASY22],
a primitive producing large amounts of correlated randomness with minimal communication and a single
round of interaction.

Known constructions. The notion of distributed sampler was introduced for the first time in [ASY22].
In their work, Abram, Scholl and Yakoubov showed how to build distributed samplers for any efficiently sam-
plable distribution D(1λ) using strong cryptographic primitives such as polynomially secure indistinguisha-
bility obfuscation [BGI+01, GGH+13] and a weaker form of multi-key FHE called multiparty homomorphic
encryption (MHE) [AJJM20, MW16]. The authors achieved constructions in the plain model with security
against non-rushing semi-malicious adversaries4, statically corrupting up to n − 1 parties. In such setting,
distributed samplers were defined as one-round protocols that implement the functionality that generates a
sample from the distribution D(1λ) and outputs it to all the parties.

The authors focussed on active security too. They managed to upgrade their constructions to this setting,
unfortunately, at the price of relying on random oracles. Active distributed samplers were defined as one-
round protocols that implement the functionality FD (see Figure 4.12) in the UC model. Such functionality
provides the adversary with a polynomial number of samples from D(1λ) and lets it choose the one it likes
the most as the final output of the protocol. Although FD allows influence to the adversary, the functionality
is strong enough to generate CRSs for MPC protocols without compromising security.

Known impossibilities. A recent work by Abram, Obremski and Scholl [AOS23] proved that, without
random oracle, it is impossible to build non-trivial active distributed samplers satisfying the definition of
[ASY22]. Actually, the impossibility holds even if we try to achieve security against rushing, semi-malicious
adversaries.

Abram, Obremski and Scholl started by showing that active distributed samplers always need common
reference strings. Then, they proved that such CRSs cannot be reused more than once, they cannot be
significantly shorter than the Yao entropy of the distribution HYao(D) (they can be at most O(log λ) bits

4Similarly to the semi-honest case, a semi-malicious adversary is forced to follow the protocol, but it can choose the ran-
domness tapes of the corrupted players as it prefers. Since the adversary is non-rushing, the choice of the randomness must be
taken at the beginning of the protocol, before the honest messages are delivered.
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The active distributed sampler functionality FD
Sample. On input Sample from the adversary, compute R $← D(1λ) and reply with R and a unique
identifier id. The adversary can query this procedure multiple times.
Output. On input îd from the adversary, the functionality retrieves the sample with identifier îd and
outputs it to all honest parties. If such sample is not defined, the functionality aborts.

Figure 4.12: The functionality for active distributed samplers in [ASY22]

shorter) and they cannot be unstructured (unless D is obliviously samplable5). These results, which just
assume the existence of OWFs, suggest that, without random oracles, active distributed samplers cannot
improve upon the trivial construction in which we directly encode a sample from D(1λ) in the CRS. In this
work, we present how to get around these impossibilities by weakening the security definition of distributed
sampler.

4.4 Almost Everywhere Extractable NIZKs
The main purpose of distributed sampler is to generate secure CRSs for multiparty computation protocols
using a single round of interaction. As we discussed in the introduction, distributed samplers can be inter-
esting if they rely on CRSs as long as the latter have nice properties such as reusability, short length and
unstructuredness.

The distributed sampler we present in this paper will make use of particular NIZKs that, if instantiated
with constructions from previous works, would compromise the reusability of the CRS. In this section, we
formalise the security properties we require from these primitives. Furthermore, we explain how to realise
our definitions obtaining short and unstructured CRSs that do not compromise reusability.

Performing extractions inside obfuscated programs.

We describe the context in which we would like to use our NIZKs. We start from a NIZK satisfying black-box
straight-line extraction. We consider an obfuscated program C0 that receives a NIZK proof π among its
input, verifies it and, based on the result, either outputs ⊥ (when the verification fails) or performs other
operations. We would like to argue that this obfuscated circuit is indistinguishable from another obfuscated
circuit C1 that has an extraction trapdoor hardcoded. When C1 receives π as input, it not only verifies the
proof, but it also tries to extract the corresponding witness. If any of the procedures fails, C1 outputs ⊥,
otherwise, it performs the same operations as C0.

Since it is hard for the adversary to come up with a proof that verifies but cannot be extracted, one
could hope to prove indistinguishability between C0 and C1 using obfuscation. Unfortunately, we cannot
rely on iO as, due to zero-knowledge, C0 and C1 will always have differing inputs. Specifically, we know that
simulated proofs exist, verify, but cannot be extracted, so they immediately lead to differing inputs.

The only way to avoid this problem is to rely on constructions in which the CRS only allows simulating
proofs for a fixed set of statements S having polynomial size p(λ). This idea was for instance used in [HIJ+17].
With this trick, we could augment the extraction trapdoor with a list of witnesses for the statements in S, so
the extraction from simulated proof will never fail. This solution, however, has the disadvantage of letting
the CRS grow with p(λ). That would make the CRS of our distributed sampler long and would hinder
reusability.

Differing-input obfuscation would solve our problems. We consider diO. This primitive guarantees
the hardness in distinguishing between the obfuscation of two circuits as long as differing inputs are hard to

5A distribution is obliviously samplable if given a sample R from D(1λ), we can simulate the randomness that produced R.
In other words, we can securely generate samples but directly feeding public random coins into D(1λ).
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find. Although the existence of general-purpose diO for circuits is often doubted [GGHW14, BSW16], we
know that, for some classes of circuits, indistinguishability obfuscators are also differing-input obfuscators.
In particular, in [BCP14], Boyle, Chung and Pass proved that this is the case when the number of differing
inputs is polynomial. By relying on subexponential secure obfuscation, it is easy to generalise the result of
[BCP14] as follows.
Lemma 4.4.1 ([BCP14]). Let Samp be a probabilistic algorithm outputting two circuits C0, C1 with input
space {0, 1}m(λ), auxiliary information aux and a secret ρ. Let O be another probabilistic algorithm that on
input a pair (ρ, x) outputs a value y. Suppose the following

• there exist efficiently computable values `0(C0, C1, aux), `1(C0, C1, aux) and d(λ) (the latter potentially
superpolynomial) such that

Pr
[∣∣DI`0,`1C0,C1

∣∣ ≤ d(λ)
∣∣∣(C0, C1, aux, ρ)

$← Samp(1λ)
]

= 1− negl(λ),

where DI`0,`1C0,C1
:=
{
Trunc`1`0(x)

∣∣C0(x) 6= C1(x)
}
.

• for every probabilistic adversary A ∈ AClass running in poly(λ, d(λ)) time,

Pr

[
y ∈ DI`0,`1C0,C1

∣∣∣∣∣(C0, C1, aux, ρ)
$← Samp(1λ)

y
$← AO(ρ,·)(1λ, 1d(λ), C0, C1, aux)

]
= negl(λ).

Let iO be an indistinguishability obfuscator against which every PPT adversary has advantage at most
negl(λ)/d(λ). Then, for every PPT adversary A ∈ AClass we have∣∣∣∣∣∣∣∣Pr

AO(ρ,·)(1λ, C0, C1, C̃, aux) = b

∣∣∣∣∣∣∣∣
b

$← {0, 1}

(C0, C1, aux, ρ)
$← Samp(1λ)

C̃
$← iO(1λ, Cb)

− 1

2

∣∣∣∣∣∣∣∣ = negl(λ).

Sketch of the proof. The proof follows the blueprint of [BCP14][Theorem 6.2], in which they convert
a successful PPT distinguisher A into a successful extractor for (prefixes of) differing inputs. The only
differences is that now, A has unbounded access to O(ρ, ·) and we are looking for substrings of differing-
inputs so the binary search will involve only the bits of the inputs in between position `0(C0, C1, aux) and
`1(C0, C1, aux). Furthermore, the parameter d(λ) is potentially superpolynomial.

Observe that the extractor of [BCP14][Lemma 6.3] is uniform if A is uniform. Notice indeed that the
extractor does not need to know the advantage ε(λ) of A 6, but only the polynomial p(λ) such that, for every
λ′ ∈ N, there exists λ′′ ≥ λ′ such that ε(λ′′) ≥ 1/p(λ′′). Moreover, it runs in time is at most d3(λ) · poly(λ).
Finally, it still outputs a prefix of differing-input with non-negligible probability.

Our goal will be to build particular NIZKs that will allow us to apply the above lemma. More in
detail, we want that the prefix of all proofs that verify but cannot be extracted lies in a set VPFE whose
elements are hard to compute even for adversaries running in time d(λ) := |VPFE|. If we succeed in
doing this, assuming the subexponential hardness of iO, we can argue that the obfuscation of C0 and C1

are indistinguishable despite the existence of differing inputs. We call the NIZK satisfying this particular
property almost everywhere extractable NIZKs.

Almost everywhere extractable NIZKs.

In this section, we formalise the properties of the NIZK needed by our distributed samplers. We recall here
the definition of identity-based NIZK [KOR05]. Informally, this is a primitive in which both the proving and
the verification algorithms are augmented with an input id denoting an identity. Completeness is guaranteed
only if the algorithms use the same id.

6This could be impossible when the extractor is uniform
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Definition 4.4.2 (Identity-based NIZK). Let R be an NP relation. An identity-based NIZK for R is a triple
of uniform PPT algorithms (Setup,Prove,Verify) with the following syntax

• Setup is randomised and takes as input the security parameter and outputs a CRS σ.

• Prove is randomised and takes as input the security parameter, the CRS σ, an identity id, a statement
x and the corresponding witness w. The output is a proof π.

• Verify is deterministic and takes as input the CRS σ, an identity id, a proof π and a statement x. The
output is a bit b representing whether the statement was accepted or not.

We require that the construction satisfies completeness, namely that there exists a negligible function negl(λ)
such that, for every (x,w) ∈ R and identity id,

Pr

[
Verify(σ, id, π, x) = 1

∣∣∣∣∣σ
$← Setup(1λ)

π
$← Prove(1λ, σ, id, x, w)

]
≥ 1− negl(λ).

Why do we need identity-based NIZKs? Almost everywhere extractable NIZKs will be identity-based.
We recall that our goal is to design NIZKs for which it is difficult to distinguish an obfuscated program that
simply verifies the provided proofs and one that instead tries to extract the witnesses. Now, in the security
proofs of many applications, e.g. our distributed samplers, the adversary will be given many simulated proofs.
In general, these are proofs where extraction fails although the verification succeeds! If we feed any of these
proofs to the obfuscated programs, we can trivially discover if the circuit tries to extract the witness or not
(in the first case, the output will always be ⊥).

Identity-based NIZKs allow us to find a way around the problem: we modify the programs so that they
will only accept proofs that verify with respect to specific hardcoded identities. If the identities of the
simulated proofs differ from the hardcoded ones, the behaviour of the program on input these simulated
proofs will be independent of whether extraction if performed or not. In order words, we are using identities
to restrict the scope of the proofs.

Alternative approaches. There are two ways we can proceed towards our goal. The first one is to achieve
a stronger form of simulation-extractability: forging a valid proof where extraction fails must be hard even
if we provide simulated proofs for different identities. Although we use this approach in [AWZ23, Section 10]
to build almost everywhere extractable NIZKs with security against uniform adversaries, in this section, we
adopt a different solution: we strengthen the notion of zero-knowledge. In particular, the extraction will take
place in two steps: first, from the general extraction trapdoor and the identity associated with the proof,
we derive an identity-specific trapdoor. Then, we use the latter to extract the witness. We require that
zero-knowledge holds even if we leak identity-specific extraction trapdoors where the underlying identities
differ from those of the simulated proofs. The obfuscated programs will contain only extraction trapdoors
associated with their hardcoded identities.

The two approaches lead to different proving strategies. If we rely on simulation-extractability, the
security proof of our application will first consider the hybrid in which the NIZKs of the honest parties
are simulated and then we switch to obfuscated programs that try to extract witnesses. If we strengthen
zero-knowledge, we will do the opposite: first, we switch to programs that extract the witnesses and then
we simulate the proofs of the honest players. The results are equivalent.

In this section, we decided to follow the second approach as it allows us to achieve our goal under weaker
assumptions. Following the blueprint in [AWZ23, Section 10], it would also have been possible to adopt
the first approach, however, that would require assuming the existence of B(λ)-bounded labelled one-way
functions (that do not need to be challengeless) that are secure against adversaries running in poly

(
2λ

e

, B(λ)
)

for some e > 0.
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Defining almost-everywhere extractability. We proceed by formalising the definition of almost every-
where extractable NIZK. The construction relies on two trapdoors τs and τe, the first one will be used to
simulate the proofs, the second one will be used to extract the witnesses. The extraction is divided into two
procedures: given a proof π with underlying identity id, we first derive the extraction trapdoor associated
with id using τ ide

$← Trap(τe, id). Next, we extract the witness from π using τ ide . It is straightforward to see
that an almost everywhere extractable NIZK is also a non-interactive argument of knowledge.
Definition 4.4.3 (Almost everywhere extractable NIZK). An identity-based NIZK for the NP relation R is
almost everywhere extractable if there exists a uniform PPT algorithms SimSetup, Trap and Extract with the
following properties

• No PPT adversary can distinguish between{
σ
∣∣∣σ $← Setup(1λ)

} {
σ
∣∣∣(σ, τs, τe) $← SimSetup(1λ)

}
• The algorithm Extract is deterministic and, for every w = Extract(τ ide , π, x),

Pr
[
(x,w) ∈ R

∣∣∣w 6= ⊥] = 1.

• There exist values `(λ) ∈ [m] and d(λ) (the latter potentially superpolynomial) and a negligible function
negl(λ) such that, for every identity id,

Pr
[∣∣VPFEσ,τe,id∣∣ ≤ d(λ)

∣∣∣(σ, τs, τe) $← NIZK.SimSetup(1λ)
]
≥ 1− negl(λ),

where

VPFEσ,τe id :=

Trunc`(π)

∣∣∣∣∣∣∣∃(x, r) s.t.
NIZK.Verify(σ, id, π, x) = 1

NIZK.Trap(τe, id; r) = τ ide

NIZK.Extract(τ ide , π, x) = ⊥


• For every probabilistic adversary A running in poly(λ, d(λ)) time, there exits a negligible function

negl(λ) such that, for every identity id

Pr

[
y ∈ VPFEσ,τe,id

∣∣∣∣∣(σ, τs, τe)
$← NIZK.SimSetup(1λ)

y
$← A(1λ, 1d(λ), σ, τe)

]
≤ negl(λ).

We prove below that, if we use almost everywhere extractable NIZKs and we rely on a subexponentially
secure iO scheme, the obfuscation of the programs C0 and C1 are indistinguishable.
Lemma 4.4.4. Let NIZK be an almost everywhere extractable NIZK for the relation R. Let d(λ) be the
upper-bound on

∣∣VPFEσ,τe,id∣∣. Suppose that iO is an indistinguishability obfuscator against which every
PPT adversary has advantage at most negl(λ)/d(λ). Then, no PPT adversary A = (A1,A2) can win the
game in Figure 4.13 with non-negligible advantage.

Proof. Let A be a PPT adversary. We proceed by means of m+ 1 subhybrids indexed by i = 0, 1, . . . ,m. In
the i-th of these hybrids, we provide A with an obfuscation of the program C ′i (see Figure 4.16).

Observe that by the security of iO, when i = 0, Hybrid i is indistinguishable from the game in Figure 4.13
when b = 0. Similarly, by the security of iO, when i = m, Hybrid i is indistinguishable from from the game
in Figure 4.13 when b = 1. It remains to prove that A cannot distinguish between Hybrid i− 1 and Hybrid
i for any i ∈ [m]. We rely on Lemma 4.4.1.

We consider the circuit sampler Sampi that runs SimSetup, provides σ and τe to A1, obtains
C, (idj)j∈[m], ψ, compute τ je for every j ∈ [m] and outputs C ′i−1, C ′i, aux := ψ and ρ := ⊥. Let O be
an algorithm that always returns the empty string. We want to argue that even when aux is revealed, no
PPT adversary can distinguish between the obfuscation of C ′i−1 and C ′i.
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diO Game for Almost Everywhere Extractable NIZKs

1. b $← {0, 1}

2. (σ, τs, τe)
$← SimSetup(1λ)

3.
(
C, (idj)j∈[m], ψ

)
$← A1(1λ, σ, τe)

4. ∀j ∈ [m] : τ je
$← Trap(τe, idj)

5. C̃0
$← iO(1λ, C0[σ, (idj)j∈[m]]) (see Figure 4.14)

6. C̃1
$← iO(1λ, C1[σ, (idj)j∈[m], (τ

j
e )j∈[m]]) (see Figure 4.15)

7. The adversary wins if A2(ψ, C̃b) = b.

Figure 4.13: diO game for almost everywhere extractable NIZKs

C0

[
σ, (idj)j∈[m]

]
Hard-coded. The NIZK CRS σ, the m identities (idj)j∈[m].
Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)

2. If ∃j ∈ [m] such that bj = 0, output ⊥

3. Output C(x1, . . . , xm)

Figure 4.14: The circuit C0

Let `(λ) and d(λ) be the values used in the third and fourth property of our almost everywhere extractable
NIZK. Let `0(λ) denote the position of the first bit of πi. Define `1(λ) := `0(λ) + `(λ).

The circuits C ′i−1 and C ′i potentially have differing inputs. Observe that these must be values (xj , πj)j∈[m]

for which Verify(σ, idi, πi, xi) = 1 but Extract(τ ie, πi, xi) = ⊥. In other words, we know that for every differing
input,

DI`0,`1C′i−1,C
′
i
⊆ VPFEσ,τe,idi .

With overwhelming probability over the randomness of SimSetup, the latter has at most d(λ) elements.
Now, suppose that there exists an adversary B running in time poly

(
λ, d(λ)

)
that can find an element in

DI`0,`1C′i−1,C
′
i
with non-negligible probability given C ′i−1, C ′i and aux = ψ. We build an adversary B′ that breaks

the fourth property of the almost everywhere extractable NIZK.
The adversary B′ runs an internal copy of A1 and one of B. It starts by providing the NIZK CRS σ and

the trapdoor τe it received from its challenger to A1 obtaining C and (idj)j∈[m]. Then, for every j ∈ [m],
B′ computes τ je

$← Trap(τe, idj). Finally, it provides B with C ′i−1, C ′i and aux := ψ and outputs whatever B
outputs. We observe that B′ outputs an element in DI`0,`1C′i−1,C

′
i
with non-negligible probability. Furthermore,

it runs in poly
(
λ, d(λ)

)
time.

We conclude that A2 cannot distinguish between the obfuscation of C ′i−1 and C ′i even if it is given ψ.
This ends the proof.
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C1

[
σ, (idj)j∈[m], (τ

j
e )j∈[m]

]
Hard-coded. The NIZK CRS σ, the m identities (idj)j∈[m], the m extraction trapdoors (τ je )j∈[m].
Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)

2. ∀j ∈ [m] : wj ← NIZK.Extract(τ je , πj , xj)

3. If ∃j ∈ [m] such that bj = 0 or wj = ⊥, output ⊥

4. Output C(x1, . . . , xm)

Figure 4.15: The circuit C1

C ′i
[
i, σ, (idj)j∈[m], (τ

j
e )j≤i

]
Hard-coded. The hybrid index i, the NIZK CRS σ where (σ, τs, τe)

$← SimSetup(1λ), them identities
(idj)j∈[m], the i extraction trapdoors (τ je )j≤i where τ je

$← Trap(τe, idj) for every j ≤ i.
Input. A set of inputs (xj)j∈[m] and a set of proofs (πj)j∈[m].

1. ∀j ≤ i : wj ← NIZK.Extract(τ je , πj , xj)

2. If ∃j ≤ i such that wj = ⊥, output ⊥

3. ∀j ∈ [m] : bj ← NIZK.Verify(σ, idj , πj , xj)

4. If ∃j ∈ [m] such that bj = 0, output ⊥

5. Output C(x1, . . . , xm)

Figure 4.16: The circuit C ′i

Chosen-ID multi-theorem zero-knowledge.

We now focus on formalising a particular zero-knowledge notion for almost everywhere extractable NIZKs.
We call the property chosen-ID zero-knowledge. Informally, it says that, as long as τ ide remains secret, it is
impossible to distinguish between a real proof under the identity id and a simulated one produced using the
trapdoor τs.

This is formalised by giving the adversary access to an oracle that either generates real proofs using
witnesses or simulates them using τs. We also give access to a second oracle that, on input any identity id,
reveals the extraction trapdoor τ ide . The adversary is allowed to perform multiple adaptive queries to both
the oracles with the only restriction that, if an identity is queried to the first oracle, it cannot be queried to
the second one and vice-versa. Even with this kind of help, the adversary should not be able to tell if it is
given real proofs or fake ones.

Definition 4.4.5 (Chosen-ID Zero-knowledge NIZK). An almost everywhere extractable NIZK (Setup,
Prove,Verify) for R is chosen-ID zero-knowledge if there exists a uniform PPT algorithm SimProve such
that no PPT adversary A can win the game in Figure 4.17 with non-negligible advantage.
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Chosen-ID Zero-Knowledge Game
Initialisation: This procedure is run only once, at the beginning of the game.

1. b $← {0, 1}

2. Q0, Q1 ← ∅

3. (σ, τs, τe)
$← SimSetup(1λ)

4. Activate the adversary with 1λ and σ.

Trapdoor: This procedure can be queried multiple times and at any point of the game. Upon receiving
any query (Trap, id) where id 6∈ Q1, compute the following.

1. Add id to Q0

2. τ ide
$← Trap(τe, id)

3. Give τ ide to the adversary.

Prove: This procedure can be queried multiple times and at any point of the game. Upon receiving
any query (Prove, id, x, w) where id 6∈ Q0 and (x,w) ∈ R, compute the following.

1. Add id to Q1

2. π0 $← Prove(1λ, σ, id, x, w)

3. π1 $← SimProve(τs, id, x)

4. Give πb to the adversary.

Win: The adversary wins if it guesses b.

Figure 4.17: Chosen-ID zero-knowledge game

4.4.1 Building almost everywhere extractable NIZKs

We explain how to build a chosen-ID zero-knowledge, almost everywhere extractable NIZK with security
against non-uniform adversaries.

Our construction relies on an identity based encryption scheme, a non-interactive commitment scheme,
a subexponentially secure injective one-way function and a NIWI proof. The CRS will consist of the IBE
master public key and a challenge v for a one-way function. It is possible to instantiate the primitives so
that the CRS is short (i.e. the length depends only on the security parameter) and unstructured.

Let R be the NP relation we are targetting, suppose that we want to prove that x ∈ LR using the identity
id. The proof is obtained by encrypting the witness w under the identity id using the IBE scheme. We also
commit to 0. Then, we generate a NIWI proving that either the ciphertext is an encryption of w under id,
or we committed to the preimage of v. The NIZK proof consists of the concatenation of the commitment,
the ciphertext and the NIWI. The verification is a simple check of the latter.

Observe that it is easy to extract the witness by decrypting the ciphertext. Of course, the operation
requires knowing the private key associated with the identity id. The latter can be derived from the master
secret key of the IBE scheme. Even simulating proofs is rather easy: it is sufficient to encrypt 0, commit to
a preimage of v and use the latter as witness for the NIWI. To summarise, the extraction trapdoor will be
the master secret key, the soundness trapdoor will be the preimage of v.
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Ensuring almost-everywhere extractability. Our idea is that, in all proofs where the witness cannot
be extracted, the commitment will hide a preimage of v. In order to ensure this, we will rely on a perfectly
correct IBE scheme (if the ciphertext hides the witness, we always succeed in extracting it) and a perfectly
sound NIWI (if the ciphertext does not hide a witness, the commitment must hide a preimage of v). Since
the one-way function is injective, there will be at most 2q(λ) ways of committing to a preimage of v. Here,
q(λ) denotes the length of the randomness used by the commitment7.

Now, suppose that the commitment is perfectly binding and it is possible to break hiding in poly
(
λ, 2q(λ)

)
time. By choosing a sufficiently large security parameter for the one-way function, we can make sure that
finding the preimage of v is hard even for adversaries running in poly

(
λ, 2q(λ)

)
time. That ensures the last

property of almost everywhere extractable NIZKs.
Proving chosen-ID zero-knowledge is instead rather easy. We just rely on witness-indistinguishability, the

hiding properties of the commitment and the IND-ID-CPA security of IBE. Notice that a message encrypted
under the identity id remains secret as long as the secret-key for id is kept private. Leaking private keys for
other identities does not help in retrieving the plaintext.

Formalising the construction. Let R the NP relation for our almost everywhere extractable NIZK.
Consider an IND-ID-CPA identity-based encryption scheme IBE where the master public key mpk is com-
putationally indistinguishable from a uniformly random string. We also require that the scheme satisfies
perfect correctness. For instance, we can use the constructions of [BB04, ABB10].

Let Com be a computationally hiding, perfectly binding non-interactive commitment scheme without
CRS. Suppose that there exists an algorithm running in superpolynomial time that breaks hiding with
probability 1. Finally, let OWF be a subexponentially secure injective one-way function. Furthermore,
assume that the one-way function outputs values that are computationally indistinguishable from a uniformly
random string. This kind of one-way function can be instantiated e.g. using DLOG.

Finally, we rely on a NIWI scheme without CRS. The underlying relation is the following.

RNIWI :=


(
(mpk, v, id, c0, c1, x),

(w, r)
)

∣∣∣∣∣∣∣
c1 = Enc(mpk, id, w; r), (x,w) ∈ R

OR
w = u, c0 = Com(u; r), OWF(1λ, u) = v


Our construction is formalised in Figure 4.18 and Figure 4.19.

Theorem 4.4.6. Suppose that Com is a computationally hiding, perfectly binding non-interactive commit-
ment. Assume that the algorithm needs q2(λ) bits of randomness. Suppose that there exists an algorithm
running in poly

(
λ, S(λ)

)
time that breaks the hiding property of Com with probability 1.

Let IBE be an IND-ID-CPA identity-based encryption scheme that satisfies perfect correctness. Let OWF
be an injective one-way function that is hard to invert even for adversaries running in poly(λ, 2q2(λ), S(λ)

)
time. Suppose that NIWI is a perfectly sound witness-indistinguishable proof system for the relation RNIWI.

Then, the construction in Figure 4.18 and Figure 4.19 is a chosen-ID zero-knowledge almost everywhere
extractable NIZK for R against non-uniform PPT adversaries.

Proof. Completeness is an immediate consequence of the completeness of NIWI.
Claim 4.4.7. The construction in Figure 4.18 and Figure 4.19 is an almost everywhere extractable NIZK.

Proof of the claim. We start by observing that the CRS σ generated by Setup(1λ) has exactly the same
distribution as the one generated by SimSetup(1λ). The second property is also straightforward.

Therefore, we focus on the third property of the almost everywhere extractable NIZKs. Let `(λ) denote
the position of the last bit of c0. We observe that by the perfect soundness of NIWI and the perfect correctness
of IBE, in all proofs that verify but cannot be extracted, c0 is a commitment to a preimage of v. Since the
OWF is injective, there exists a unique preimage. Furthermore, the commitment algorithm takes as input
q2(λ) bits of randomness. We conclude that, with probability 1, VPFEσ,τe,id contains at most 2q2(λ) elements.

7We can assume that q(λ) is independent of the length of the committed value. Consider for instance a scheme in which we
commit the message bit by bit and all the randomness comes from a PRF.
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Chosen-ID Zero-Knowledge, Almost Everywhere Extractable NIZK - Part 1
Let q1(λ) denote the length of the randomness needed by IBE.Enc.
Setup(1λ)

1. (mpk,msk)
$← IBE.Setup(1λ)

2. (v, u)
$← OWF.Gen(1λ)

3. Output σ := (mpk, v)

Prove
(
1λ, σ = (mpk, v), id, x, w

)
1. c0 $← Com(1λ, 0)

2. r $← {0, 1}q1(λ)

3. c1 ← IBE.Enc(mpk, id, w; r)

4. π′ $← NIWI.Prove
(
1λ, (mpk, v, id, c0, c1, x), (w, r)

)
5. Output π := (c0, c1, π

′)

Verify
(
σ = (mpk, v), id, π = (c0, c1, π

′), x
)

1. Output NIWI.Verify
(
π′, (mpk, v, id, c0, c1, x)

)
Figure 4.18: A chosen-ID zero-knowledge, almost everywhere extractable NIZK - Part 1

Now, suppose that an adversary B running in time poly
(
λ, 2q2(λ)

)
can find an element in VPFEσ,τe,id

with non-negligible probability after being provided with σ and τe. We can use this adversary to break the
subexponential one-wayness of OWF. Indeed, consider the adversary that after receiving v from its challenger,
generates (mpk,msk) using IBE.Setup and provides the pair σ = (mpk, v), τe = msk to B. When the latter
replies with c0, the new adversary retrieves the value hidden in c0, breaking the hiding property of the
commitment. The total running time of poly

(
λ, 2q2(λ), S(λ)

)
and, with non-negligible probability, due to the

perfectly binding property of the commitment scheme, the output is the value u such that OWF(1λ, u) = v.
We reached a contradiction. This ends the proof of the claim. �

Claim 4.4.8. The construction in Figure 4.18 and Figure 4.19 satisfies chosen-ID zero-knowledge.

Proof of the claim. We prove the result by means of a sequence of indistinguishable hybrids. We repeat
it for i = 0, 1, . . . ,M where M is a polynomial upper bound on the number of Prove queries issued by the
adversary (since A is PPT, M exists). Throughout the proof, for any i, let πi denote the proof provided to
the adversary in the i-th Prove query. Let us denote the identity, the statement and the witness of the latter
by idi, xi and wi respectively.

Hybrid i.0. In this hybrid, for every j ≤ i, we generate the proof πj using SimProve(τs, idj , xj). For every
j > i instead, we generate the proof πj using Prove(1λ, σ, idj , xj , wj). When i = 0, this hybrid corresponds to
the execution of the chosen-ID zero-knowledge game (see Figure 4.17) with b = 0. In particular, the proofs
are all generated using the witnesses for R. In all other cases, this hybrid is identical to Hybrid (i− 1).3.

Hybrid i.1. In this hybrid, in the i-th proof, instead of committing to 0, we commit to τs = u.
This hybrid is indistinguishable from the previous one by the hiding property of the commitment scheme.
Formally, the operations to generate πi are the following. All other proofs are generated as in the previous
hybrid.

1. c0 $← Com(1λ, u)
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Chosen-ID Zero-Knowledge, Almost Everywhere Extractable NIZK - Part 2
Let q2(λ) denote the length of the randomness needed by Com.
SimSetup(1λ)

1. (mpk,msk)
$← IBE.Setup(1λ)

2. (v, u)
$← OWF.Gen(1λ)

3. Output σ := (mpk, v), τs := u, τe := msk

SimProve(τs = u, id, x)

1. r $← {0, 1}q2(λ)

2. c0 ← Com(1λ, u; r)

3. c1 $← IBE.Enc(mpk, id, 0)

4. π′ $← NIWI.Prove
(
1λ, (mpk, v, id, c0, c1, x), (u, r)

)
5. Output π := (c0, c1, π

′)

Trap(τe = msk, id)

1. Output IBE.Extract(msk, id)

Extract(τ ide , π = (c0, c1, π
′), x)

1. w ← IBE.Dec(τ ide , c1)

2. If (x,w) ∈ R, output w, otherwise, output ⊥.

Figure 4.19: A chosen-ID zero-knowledge, almost everywhere extractable NIZK - Part 2

2. r $← {0, 1}q1(λ)

3. c1 ← IBE.Enc(mpk, idi, wi; r)

4. π′ $← NIWI.Prove
(
1λ, (mpk, v, idi, c0, c1, xi), (wi, r)

)
5. Output πi := (c0, c1, π

′)

Hybrid i.2. In this hybrid, instead of using wi and the randomness used to generate c1 as witness for
NIWI, we use u and the randomness used for c0. By the witness indistinguishability of NIWI, this hybrid is
indistinguishable from the previous one. Formally, the operations to generate πi are the following. All other
proofs are generated as in the previous hybrid.

1. r $← {0, 1}q2(λ)

2. c0 ← Com(1λ, u; r)

3. c1 $← IBE.Enc(mpk, idi, wi)

4. π′ $← NIWI.Prove
(
1λ, (mpk, v, idi, c0, c1, xi), (u, r)

)
5. Output πi := (c0, c1, π

′)
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Hybrid i.3. In this hybrid, instead of encrypting wi using IBE, we encrypt 0. This hybrid is indistin-
guishable from the previous one by the IND-ID-CPA security of IBE. Notice indeed, that we never provide
the adversary with τe nor with τ idie . Formally, the operations to generate πi are the following. All other
proofs are generated as in the previous hybrid.

1. r $← {0, 1}q2(λ)

2. c0 ← Com(1λ, u; r)

3. c1 $← IBE.Enc(mpk, idi, 0)

4. π′ $← NIWI.Prove
(
1λ, (mpk, v, idi, c0, c1, xi), (u, r)

)
5. Output πi := (c0, c1, π

′)

Notice that when i = M , the last hybrid is identical to the to the execution of the chosen-ID zero-knowledge
game (see Figure 4.17) with b = 1. This ends the proof of the claim. �

4.5 Weakening Distributed Samplers to Avoid Random Oracles
In this section, we reformulate the concept of distributed sampler under a new light. Although we weaken the
simulation-based definition of [ASY22], we obtain a meaningful notion of security against active adversaries.
This allows us to build constructions that overcome the impossibilities of [AOS23] without using random
oracles.

Syntax of Distributed Samplers.

We start by recalling the syntax of distributed samplers [ASY22].
Definition 4.5.1 (Distributed Sampler). An n-party distributed sampler is a triple of uniform, PPT algorithms
(Setup,Gen,Sample) with the following syntax:

• Setup is a probabilistic algorithm taking as input the security parameter. The output is a string crs.

• Gen is a probabilistic algorithm taking as input the security parameter, a session identity sid, the index
i ∈ [n] of the party running the algorithm and the string crs. The output is the distributed sampler
message Ui of the i-th party.

• Sample is a deterministic algorithm taking as input n distributed sampler messages U1, U2, . . . , Un, a
session identity sid and the string crs. The output is a sample R.

Observe that distributed samplers are implicitly associated with a one-round protocol with CRS (the
latter is generated using Setup(1λ)) producing a sample from a target distribution D. In such protocol, all
the parties Pi simultaneously broadcast a distributed sampler message Ui $← Gen(1λ, sid, i, crs). After that,
everybody retrieves the output R← Sample(U1, U2, . . . , Un, sid, crs).

Notice that, compared to [ASY22], we augmented the generation and sampling algorithms with a session
identity. The latter can be used to restrict the context in which the distributed sampler messages can be
used. For instance, it can identify the identities of the parties taking part to the protocol. If the session
identity of any of the exchanged messages does not match the expected set of parties, the sampling algorithm
will produce ⊥.
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4.5.1 Hardness-Preserving Distributed Samplers.
We now present the first weakening of the original definition. The notion is called hardness-preserving
distributed sampler. The name refers to the fact that this kind of distributed sampler allows compiling
protocols with CRS Π into protocols without CRS Π′ while preserving the hardness properties: if the
probability of realising an attack against Π is negligible, the probability of realising the same attack against
Π′ still remains negligible.

An unusual definition of security. Our definition is based on a real-world/ideal-world paradigm where
simulation is non-black-box. In the real world, the adversary is provided with a distributed sampler CRS
and the message of a honest party. After selecting the distributed sampler messages of the other parties,
the adversary is provided with the output of the protocol (notice that the adversary was already able to
compute this on its own). In the ideal world, instead, the CRS and the message of the honest party are
produced by a simulator. The latter is given an ideal sample R $← D(1λ). When the adversary answers with
the distributed sampler messages of the other players, we do not compute the output of the protocol, we
just provide the adversary with R.

The important point is that we do not ask for indistinguishability between the real-world and the ideal
world. That would indeed be impossible to achieve. We ask instead that if an adversary A outputs 1
with non-negligible probability while interacting with the real world, then, A outputs 1 with non-negligible
probability even while interacting with the ideal world.
Definition 4.5.2 (Hardness-Preserving Distributed Sampler). Let D(1λ) be an efficient distribution. We
say that an n-party distributed sampler is hardness-preserving for D(1λ) against AClass if, for every PPT
A ∈ AClass, there exists a pair of PPT non-uniform simulators (SimSetupA,SimGenA) such that, in the game
GHP in Figure 4.20,

Pr
[
GAHP(1λ) = 1

∣∣b = 0
]

= nonegl(λ) =⇒ Pr
[
GAHP(1λ) = 1

∣∣b = 1
]

= nonegl(λ).

Preservation of hardness.

We now explain in what sense distributed samplers satisfying Definition 4.5.2 preserve hardness.
We start by formalising the concept of game with oracle distribution. This basically corresponds to a

game describing the interaction between n parties connected by authenticated point-to-point channels and
a broadcast medium. The adversary has full control over the corrupted players, whereas the operations of
the honest parties is managed by the challenger of the game. The novelty compared to the a standard game
is that, at some point in time, the parties are all provided with the same ideal sample R from a distribution
D(1λ). The moment in which the sample is delivered is chosen by the parties themselves: by sending a
special message (Sample, i), the i-th party declares its approval on delivering R. When all the honest parties
expressed their agreement, the sample R is provided to the adversary. When all the corrupted parties agree
too, the sample R is given to the challenger too. The adversary wins the game if the challenger terminates its
execution outputting 1. For instance, this can mean that the adversary succeeded in performing an attack.
We define the advantage as the probability of this event.
Definition 4.5.3 (Game with oracle distribution). An n-party game with oracle distribution is a triple G :=
(D,Ch) where

1. D(1λ) is an efficient distribution: a uniform, PPT algorithm taking only the security parameter as
input.

2. Ch is an efficient challenger: a uniform, PPT, round-based, interactive Turing machine that, for every
i ∈ [n], sends the message (Sample, i) at most once in its execution.
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The Hardness-Preserving Game GHP
Each phase is run only once.
Initialisation Phase:

1. b $← {0, 1}

2. R(1) $← D(1λ)

3. crs(0) $← Setup(1λ)

4. (crs(1), ζ)
$← SimSetupA(1λ)

5. Activate A with 1λ and crs(b).

Generation Phase:

1. Receive i ∈ [n] and a session identity sid = (tag, idj1 , . . . , idjn) from A

2. U (0) $← Gen(1λ, sid, i, crs(0))

3. U (1) $← SimGenA(1λ, sid, i, ζ, R(1))

4. Ui ← U (b)

5. Provide Ui to A

Sampling Phase

1. Receive (Uj)j 6=i from A

2. R(0) ← Sample(U1, . . . , Un, crs
(0))

3. If R(0) = ⊥, output 0.

4. Otherwise, provide R := R(b) to A

5. The output of the game is the bit output by A.

Figure 4.20: The hardness-preserving game GHP

Let A be a round-based interactive Turing machine. We define GA(1λ) to be the output of the game in
Figure 4.21.

For every adversary A, we define the advantage of A in the game G as

AdvGA(λ) := Pr
[
GA(1λ) = 1

]
.

We say that A wins with non-negligible advantage if AdvGA(λ) is non-negligible in the security parameter.
Notice that at the beginning of the game in Definition 4.5.3, the adversary is allowed to choose the set

of honest parties H and an auxiliary input aux for Ch. In other words, our definition considers only static
corruption in the dishonest majority setting.

On the expressiveness of the model. Protocols relying on CRSs can be formulated as games with
oracle distribution. In such settings, D(1λ) represents the distribution from which the CRS is generated.
Since the CRS should be given before the beginning of the protocol, in the corresponding game with oracle
distribution, the challenger immediately starts by sending (Sample, i) for every i ∈ H. It then waits for
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Game with Oracle Distribution

1. Activate the adversary A with 1λ.

2. Receive aux, H ⊆ [n] from A.

3. R $← D(1λ)

4. Activate a copy of Ch with 1λ, H and aux.

5. Relay all the messages from Ch to A.

6. Relay all the messages from A to Ch.

7. After the challenger has sent (Sample, j) for every j ∈ H, provide A with R.

8. Only when the above occurred, after A has sent (Sample, j) for every j 6∈ H, provide R to Ch.

9. Keep relaying the messages between A and Ch as before.

10. The output of the game is the value output by Ch before halting.

Figure 4.21: Game with oracle distribution

analogous messages from the corrupted players, ignoring all other communication. After that, the challenger
runs the protocol with the adversary on behalf of the honest parties.

More in general, games with oracle distributions can be used to analyse the security of protocols that
rely on a sampling resource: a functionality that, upon receiving the approval of all players, delivers an ideal
sample from a fixed distribution D(1λ). The sample is leaked to the adversary in advance, at the moment
in which all the honest players send their approval.

Compiling games with oracle distributions using distributed samplers. Using a distributed sam-
pler for D, there is a natural way to compile a game with oracle distribution G = (D,Ch) into a standard
interactive game. The delivery of a special message (Sample, i) in G will correspond to the delivery of a
distributed sampler message Ui from party Pi. The sample R used by the challenger Ch will be the output
of the distributed sampler. If the output is R = ⊥, the challenger always halts outputting 0.

Observe that, as in the game with oracle distribution, the adversary can learn the sample R as soon as
all the honest parties deliver their distributed sampler messages. Indeed, the adversary may have already
chosen the distributed sampler messages of the corrupted players without revealing them. The honest players
(i.e. the challenger) will discover R only when the adversary decides to deliver these messages.

Notice that in the case of a protocol with CRS Π, the compiled game consists of the sequential composition
of a distributed sampler with Π, where the former is used to generate the CRS for the latter.

Multi-session security. Distributed samplers sometimes make use of a CRS. We would like the latter
to be reusable among multiple sessions involving different subsets of parties. Since all these executions are
correlated by the use of the same CRS, the security analysis of the compiled game cannot restrict to single
sessions. For this reason, upon activation, we provide the adversary with the distributed sampler CRS and
we let it choose the identities of a large number m > n of players that will constitute our universe. At the
same time, it also selects the set of honest players H. At that point, the adversary is free to engage in many,
possibly simultaneous sessions of the compiled game, all using the same distributed sampler CRS. Each
session takes place between n parties chosen by the adversary. The session is uniquely identified by a session
label sid consisting of the identities of the n parties and an additional label tag that acts like a counter.
Thanks to the latter, it will be possible to have multiple sessions among the same subset of parties. For each
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session, the adversary is also allowed to choose a different auxiliary input aux. We define the advantage of
the adversary as the probability that, in one of the sessions, the challenger outputs 1.
Definition 4.5.4 (Compiled game). Let G = (D,Ch) be an n-party game with oracle distribution and let
DS = (Setup,Gen,Sample) be an n-party distributed sampler. We define the compiled game G′ in Figure 4.22.
For any PPT adversary A, we denote the output of the game by G′A(1λ). We denote the value output by A
before halting by AG′(1λ).

We define the advantage of A in the game G′ as

AdvG
′

A (λ) := Pr
[
G′A(1λ) = 1

]
.

We say that A wins with non-negligible advantage if AdvG
′

A (λ) is non-negligible in the security parameter.
In the next theorem, we show that if the distributed sampler is hardness-preserving, hard-to-win games

with oracle distribution are compiled into standard games that are still hard to win. In other words, if we
have a protocol with CRS Π for which all PPT adversaries fail in performing an attack, the attack remains
hard to perform even against the compiled protocol Π′.
Theorem 4.5.5. Let G := (D,Ch) be an n-party game with oracle distribution such that every PPT adversary
A has negligible advantage against G. Let DS = (Setup,Gen,Sample) be an n-party distributed sampler. If
DS is hardness-preserving for D against AClass, there exists no PPT A′ ∈ AClass such that AdvG

′

A′(λ) is
non-negligible.

The idea at the base of the proof is rather simple. Suppose that an adversary A′ can win against the
compiled game with non-negligible advantage. That means that, if we pick a session at random, the session
output is 1 with non-negligible probability. Now, we build an the adversary B against the hardness-preserving
property of the distributed sampler. The latter picks a random session ι of the compiled game and simulates
it to A′ using the values provided by its challenger. In particular, B is given the CRS crs, the honest
distributed sampler message that is sent for last and the distributed sampler output. The adversary B halts
outputting the outcome of the ι-th session.

In the real-world execution of the distributed sampler, B outputs 1 with non-negligible probability, so,
by the hardness-preserving properties, the same must happen in the ideal-world execution. In the latter,
however, in B’s simulation of the ι-th session, the challenger is given an ideal sample from D(1λ) instead of
the actual distributed sampler output. From this, we can easily build a PPT adversary A that wins against
G with non-negligible advantage.

Proof. Suppose that our game is false and there exists a PPT adversary A′ ∈ AClass such that AdvG
′

A′(λ) is
non-negligible. Let M(λ) be a polynomial upper-bounding the number of NewSession queries issued by A.

We construct a PPT adversary B ∈ AClass for the hardness-preserving game such that

Pr
[
GBHP(1λ) = 1

∣∣b = 0
]

= nonegl(λ). (4.1)

The adversary B starts its execution by selecting a random value ι $← [M ]. Then, it uses the value crs given
by its challenger to simulate G′ to an internal copy of A′. It behaves slightly differently in the ι-th NewSession
query. Specifically, let (Sample, i) be the last special message sent by Ch in that session. Instead of providing
a distributed sampler message generated using DS.Gen, the adversary B queries its challenger with i and
sid = (tag, idj1 , . . . , idjn). It provides the adversary with the answer Ui. Moreover, after all the distributed
sampler messages (Uj)j∈[n] have been exchanged, B does not compute the sample R using DS.Sample, but
queries its challenger with (Uj)j 6=i. It gives the answer to Ch. All the rest remains as in Figure 4.22. The
final output of B corresponds to the output of the ι-th session.

We observe that if the bit b in the hardness-preserving game is set to 0, the view of A′ in G′ coincides
with the one in B’s simulation. So,

Pr
[
GBHP(1λ) = 1

∣∣b = 0
]
≥ 1

M(λ)
· Pr

[
G′A′(1λ) = 1

]
.
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Compiled Game with Oracle Distribution
Initialisation: This procedure is run only once, at the beginning of the game.

1. crs
$← DS.Setup(1λ)

2. Activate the adversary A with 1λ and crs.

3. Receive a list of identities of the parties ID := {id1, . . . , idm} from A along with the subset of
honest players H ⊆ [m].

Session: This procedure can be queried multiple times and at any point of the game. Upon receiving
any query (NewSession, tag, idj1 , . . . , idjn , aux) where the session identity sid := (tag, idj1 , . . . , idjn) has
not been queried before, idji ∈ ID for every i ∈ [n], idjl 6= idjk for every l 6= k and aux, perform the
following.

1. Store sid

2. ∀i ∈ [n] such that ji ∈ H : Ui
$← DS.Gen(1λ, sid, i, crs)

3. Activate a new copy of Ch with 1λ, H ′ := {i ∈ [n]|ji ∈ H} and aux.

4. Relay all the messages from Ch to A appending sid to them.

5. Relay all the messages from A with prefix sid to Ch (the prefix is removed).

6. When Ch sends (Sample, i) for any i ∈ H ′, provide A with (sid,Sample, idji , Ui).

7. When A sends (sid,Sample, idji , Ui) for any i 6∈ H ′, give (Sample, i) to Ch.

8. When all the messages (sid,Sample, idji , Ui)i∈[n] have been exchanged, provide Ch with R ←
DS.Sample(U1, . . . , Un, sid, crs).

9. Keep relaying the messages between Ch and A as before.

10. The output of the session is the value output by Ch before halting. If R = ⊥, the output of the
session is 0.

Output: In the game, multiple sessions are run in parallel. The output of the game is 1 if there exists
a session that terminates with 1.

Figure 4.22: Compiled game with oracle distribution
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The latter is non-negligible. Notice also that since the challenger of G′ is uniform and PPT, B still belongs
to AClass. We have just proven equation (4.1).

By the hardness-preserving property of DS, we know that there exists a pair of PPT algorithms
(SimSetupB,SimGenB) such that

Pr
[
GBHP(1λ) = 1

∣∣b = 1
]

= nonegl(λ). (4.2)

We can finally build a PPT adversary A that wins the game G with non-negligible advantage. The
adversary A runs an internal copy of A′. It starts its execution by sampling ι $← [M ] and running (crs, ζ)

$←
SimSetupB(1λ). Then, it simulates the game G′ to A′ using crs as CRS for the distributed sampler. The
simulation of the game takes place as in Figure 4.22 with the exception of the ι-th session. Let sid =
(tag, idj1 , . . . , idjn) be the corresponding session identity and aux the corresponding auxiliary input. The
adversary A provides its challenger with aux and the set of honest players {i ∈ [n]|ji ∈ H}. Then, it relays
the messages between A′ and Ch. When A receives (Sample, i) where i ∈ H from its challenger, it generates a
distributed sampler message Ui and sends it to A′. The operations is always performed using DS.Gen except
for the last honest player. In that case, A receives an ideal sample R from its challenger, so, it generates Ui
using

Ui
$← DS.SimGenB(1λ, sid, i, ζ, R).

When A′ sends a distributed sample message in the ι-th session on behalf of a corrupted party idji , A sends
(Sample, i) to Ch. The adversary A terminates its execution when A′ does.

We observe that
Pr
[
GA(1λ) = 1

]
= Pr

[
GBHP(1λ) = 1

∣∣b = 1
]

= nonegl(λ).

4.5.2 Indistinguishability Preserving Distributed Samplers
Hardness-preserving distributed samplers guarantee a somewhat limited form a security: they are just meant
to preserve the hardness of computations. In other words, if we have two indistinguishable games relying
on a CRS, a hardness-preserving distributed sampler does not guarantee that the compiled games are still
indistinguishable.

More concretely, suppose that we deal with the security proof of a protocol Π relying on a CRS R. That
means that there exists a simulator S such that Π is indistinguishable from the interaction between S and a
functionality F. A hardness-preserving distributed sampler does not guarantee that the compiled protocol
Π′ still implements the functionality F. Indeed, how can we simulate the distributed sampler messages sent
in Π′? Notice that in its simulation, S might rely on a trapdoored version of the CRS R. It can be that
the outputs of the hardness-preserving distributed sampler never have a trapdoor. Furthermore, even if the
trapdoor existed, how would S retrieve it?

We need our distributed sampler to satisfy additional properties. For this reason, we introduce the notion
of indistinguishability-preserving distributed sampler. They will guarantee that, under some conditions, if a
protocol Π relying on a CRS implements a functionality F against an active adversary in the UC model, the
compiled protocol still implements F. As for the hardness-preserving case, indistinguishability-preserving
distributed samplers overcome the impossibilities of [AOS23]. They can therefore be built without using
random oracles.

Roadmap for the definition. In order to formalise the definition of indistinguishability-preserving dis-
tributed sampler, we need to introduce preliminary concepts. We will define a trapdoored version of games
with oracle distribution. This notion is meant to model the behaviour of a simulator that hides trapdoors
in the CRSs it produces. In a game with trapdoor oracle distribution, the ideal sample given to the parties
hides a trapdoor T . The latter is revealed only to the challenger simultaneously with R. We then define
indistinguishability between a game with oracle distribution and a game with trapdoored oracle distribution.
Finally, we define indistinguishability-preserving distributed samplers as distributed samplers that compile
games with oracle distribution and games with trapdoored oracle distribution preserving indistinguishability.
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Games with trapdoored oracle distribution. We introduce the concept of trapdoored distribution.
Essentially, the latter consists of a distribution D′ that outputs samples R along with trapdoors T . The
trapdoor distribution D′ can also be given an auxiliary input aux′ of fixed length. The notion is formalised
with respect to another (standard) distribution D. We require that for every value aux′, the sample R
generated by D′ is indistinguishable from the one generated by D.

Definition 4.5.6 (Trapdoored distribution). Let D(1λ) be an efficient distribution. A trapdoored distribution
for D is a uniform, PPT algorithm D′ which takes as input the security parameter 1λ and auxiliary informa-
tion aux′ ∈ {0, 1}`(λ) where `(λ) is a fixed polynomial. The outputs are a sample R and a trapdoor T . We
also require that, for every auxiliary input aux′ ∈ {0, 1}`(λ), the following distributions are indistinguishable{

R
∣∣∣R $← D(1λ)

}
and

{
R
∣∣∣(R, T )

$← D′(1λ, aux′)
}
.

Trapdoored distributions are meant to represent the distributions used by simulators of MPC protocols.
The auxiliary input aux′ can be used to represent any information that the simulator receives from the
functionality such as public inputs. It may happen indeed that the simulated CRS depends on these.
Examples of this kind are statistically-sound simulation extractable NIZKs [HIJ+17], in which the CRS for
a simulated proof is a commitment to the statement.

We formalise the notion of game with trapdoored oracle distribution. The concept is similar to the one in
Definition 4.5.3. The difference is that now we deal with a trapdoored distribution D′.

Definition 4.5.7 (Game with trapdoored oracle distribution). An n-party game with trapdoored oracle dis-
tribution is a triple G := (D′,Ch) where

1. D′ is a trapdoored distribution.

2. Ch is an efficient challenger: a uniform, PPT, round-based, interactive Turing machine that, for every
i ∈ [n], sends the message (Sample, i) at most once in its execution.

Indistinguishability-preserving distributed samplers will be compatible only with a particular class of
games with trapdoored oracle distribution. The interaction between the adversary and the challenger will
be analogous to the one in Figure 4.21 with the difference that when the challenger receives the sample R,
it may also obtain the corresponding trapdoor T . The adversary instead never receives T . The choice of the
auxiliary input aux′ given to D′ is made by the challenger when R is given to the adversary. We say that
the game satisfies trapdoor security if it is impossible for the adversary to tell if the trapdoor was given to
the challenger or not. If the first case, we say that the game is in trapdoor mode, otherwise, we say that the
game is in no-trapdoor mode.

Definition 4.5.8 (Trapdoor security). Consider an n-party game with trapdoored oracle distribution G =
(D′,Ch). We say that G satisfies trapdoor security if every PPT adversary A wins the game in Figure 4.23
with negligible advantage.

Why do we need the above property? Trapdoor security ensures that, independently on whether the
trapdoor will be provided, the challenger will be able to conclude its execution obtaining indistinguishable
outcomes. Indistinguishability-preserving distributed samplers will guarantee that, if an game with oracle dis-
tribution G0 = (D,Ch0) is indistinguishable from a game with trapdoored oracle distribution G1 = (D′,Ch1),
then, also the compiled games are indistinguishable. In the security proof of our construction, we will switch
the challenger of the compiled games from Ch0 to Ch1, using the mode of operation in which no trapdoor is
given. Then, we gradually modify the output of the distributed sampler, switching from D to the trapdoored
version D′. In other words, there will be some hybrids in which part of the outputs of the distributed sampler
are trapdoored, whereas the rest is not. Since there will be no way to predict whether the adversary chooses
a trapdoored sample or not, we need to make sure that before R is delivered to it, Ch1 will not rely on the
fact that a trapdoor will be given at some point. Trapdoor security guarantees this.
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Trapdoor Security Game

1. b $← {0, 1}

2. Activate the adversary A with 1λ.

3. Receive aux and H ⊆ [n] from A.

4. Activate a new copy of Ch with 1λ, H and aux.

5. Relay all the messages from Ch to A.

6. Relay all the messages from A to Ch.

7. After the Ch has sent (Sample, i) for every i ∈ H, receive aux′ ∈ {0, 1}`(λ) from Ch, compute
(R, T )

$← D′(1λ, aux′) and provide A with R.

8. After the above occurred and after A has sent (Sample, i) for every i 6∈ H, provide Ch with R and,
if b = 1, with T too.

9. Keep relaying the messages between A and Ch as before.

Win: The adversary wins if it guesses b.

Figure 4.23: Trapdoor security game

Trapdoorable distributed samplers and compiled games. We need to explain how to compile a
game with trapdoored oracle distribution. We start by introducing the concept of trapdoorable distributed
sampler.
Definition 4.5.9 (Trapdoorable distributed sampler). An n-party trapdoorable distributed sampler is a tuple
of PPT algorithms (Setup,Gen,Sample,SimSetup,SimGen,Trap) where

1. (Setup,Gen,Sample) is an n-party distributed sampler.

2. SimSetup(1λ) is a PPT algorithm taking as input the security parameter. The output is a simulated
CRS crs and the information ζ.

3. SimGen(1λ, sid, i, ζ, aux′) is a PPT algorithm taking as input the security parameter, a session-identity,
an index i ∈ [n], the information ζ and aux′. The output is distributed sampler messages Ui and the
trapdoor information ξ.

4. Trap
(
ξ, (Ui)i∈[n]

)
is a deterministic algorithm taking as input the trapdoor information ξ and the

distributed sampler messages (Ui)i∈[n]. The output is a pair (R, T ).

Essentially, a trapdoorable distributed sampler is a distributed sampler in which the CRS and the mes-
sages can be simulated in a way that the outputs will be sampled from a trapdoored distribution D′ instead
of D. In other words, the samples will be equipped with trapdoors. The latter can be retrieved from the
exchanged messages using the algorithm Trap. The auxiliary information aux′ needed by D′ will be hidden
in the simulated messages. All the samples produced by the construction will use the same aux′.

We can finally explain how to compile a game with trapdoored oracle distribution using a trapdoorable
distributed sampler. The idea is similar to the one explained in Definition 4.5.4. The main differences is that
now, the distributed sampler CRS and the last message sent by a honest party in each session are simulated
using SimSetup and SimGen. The auxiliary information input in SimGen will be the one provided by the
challenger. When all the distributed sampler messages have been exchanged, we provide the challenger with
a pair (R, T ) generated using Trap.
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Compiled Game with Trapdoored Oracle Distribution
Initialisation: This procedure is run only once, at the beginning of the game.

1. (crs, ζ)
$← DS.SimSetup(1λ)

2. Activate the adversary A with 1λ and crs.

3. Receive a list of parties ID := {id1, . . . , idm} from A along with the subset of honest players
H ⊆ [m].

Session:This procedure can be queried multiple times and at any point of the game. Upon receiving
any query (NewSession, tag, idj1 , . . . , idjn , aux) where the session identity sid := (tag, idj1 , . . . , idjn) has
not been queried before, idji ∈ ID for every i ∈ [n], idjl 6= idjk for every l 6= k and aux, perform the
following.

1. Store sid

2. ∀i s.t. ji ∈ H : Ui
$← DS.Gen(1λ, sid, i, crs)

3. Activate a new copy of Ch with 1λ, H ′ := {i ∈ [n]|ji ∈ H} and aux.

4. Relay all the messages from Ch to A appending sid to them.

5. Relay all the messages from A with prefix sid to Ch (the prefix is removed).

6. When Ch sends (Sample, i) for any i ∈ H ′ except the last one left, provide A with
(sid,Sample, idji , Ui).

7. When Ch sends (Sample, i) for the last i ∈ H ′, obtain aux′ ∈ {0, 1}`(λ) from Ch1, compute (Ui, ξ)
$←

DS.SimGen(1λ, sid, i, ζ, aux′). Then, provide A with (sid,Sample, idji , Ui).

8. When A sends (sid,Sample, idji , Ui) for any i 6∈ H ′, give (Sample, i) to Ch.

9. When all the messages (sid,Sample, idji , Ui)i∈[n] have been exchanged, compute (R, T ) ←
DS.Trap

(
ξ, (Uj)j∈[n]

)
. Provide (R, T ) to Ch.

10. Keep relaying the messages between Ch and A as before.

Figure 4.24: Compiled game with trapdoored oracle distribution

Definition 4.5.10 (Compiled game with trapdoored oracle distribution). Consider an n-party game with
trapdoored oracle distribution G = (D,Ch) and let DS = (Setup,Gen,Sample,SimSetup,SimGen,Trap) be an
n-party trapdoorable distributed sampler.

For any PPT adversary A, we denote by AG′(1λ) the value output by A at the end of the game in
Figure 4.24.

Defining indistinguishability-preserving distributed samplers. Indistinguishability-preserving dis-
tributed samplers compile indistinguishable games with oracle distributions into standard indistinguishable
games. We are interested in the case in which one of the games with oracle distribution is trapdoored.

We define chosen-sample indistinguishability. Essentially, the latter says that a game with oracle distri-
bution G0 = (D,Ch0) is indistinguishable from a game with trapdoored oracle distribution G1 = (D′,Ch1) if
no PPT adversary A can tell the two apart even if the A is allowed to choose the sample R. The challenger
Ch1 is never provided with trapdoors.
Definition 4.5.11 (Chosen-sample Indistinguishable games with oracle distribution). Consider any pair
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Chosen-Sample Indistinguishability for Games with Oracle Distribution

1. b $← {0, 1}

2. Activate the adversary A with 1λ.

3. Receive aux and H ⊆ [n] from A.

4. Activate a copy of Chb with 1λ, H and aux.

5. Relay all the messages from Chb to A.

6. Relay all the messages from A to Chb.

7. After the Chb has sent (Sample, i) for every i ∈ H and A has sent (Sample, i) for every i 6∈ H, let
A choose R and provide it to Chb. Do not provide aux′ to A.

8. Keep relaying the messages between A and Chb as before.

Win: The adversary wins if it guesses b.

Figure 4.25: Chosen-sample indistinguishability for games with oracle distribution

(G0,G1) where G0 = (D,Ch0) is a game with oracle distribution and G1 = (D′,Ch1) is a game with trapdoored
oracle distribution. We say that G0 and G1 are chosen-sample indistinguishable if every PPT adversary A
wins the game in Figure 4.25 with negligible advantage.

The reason why we let the adversary choose R is the influence allowed in the compiled games. While in
a game with oracle distribution the choice of the sample R is not affected by the adversary, in the compiled
games, the adversary has always some influence. If we want the compiled games to be indistinguishable, it
is important that the challengers Ch0 and Ch1 cannot be told apart, no matter how the adversary influences
the choice of R.

We can finally define indistinguishability-preserving distributed samplers.
Definition 4.5.12 (Indistinguishability-preserving distributed sampler). Let D(1λ) be an efficient distribution
and let D′ be a trapdoored distribution for D. We say that an n-party trapdoorable distributed sampler
is indistinguishability-preserving for (D,D′) against AClass if, for every PPT adversary A ∈ AClass and for
every pair (G0,G1) of chosen-sample indistinguishable games where G0 = (D,Ch0) is a game with oracle
distribution and G1 = (D′,Ch1) is a game with trapdoored oracle distribution satisfying trapdoor security,
we have ∣∣∣Pr[AG′0(1λ) = 1]− Pr[AG′1(1λ) = 1]

∣∣∣ = negl(λ),

where G′0 and G′1 are the compiled games.

Applications of indistinguishability-preserving distributed samplers for protocol security.

We now show that, in most cases, indistinguishability-preserving distributed samplers can be used to remove
CRSs in MPC protocols at the cost of one additional round of interaction while preserving simulation security.
This holds in a context of active adversaries statically corrupting any number of the parties. Our theorem
is formalised below.
Theorem 4.5.13. Assume the existence of authenticated point-to-point channels and a broadcast medium.
Let Π be an n-party protocol implementing a PPT functionality F against active PPT adversaries in the
UC model with static corruption. Suppose that Π relies on a CRS R generated according to the distribution
D(1λ). Let S be the corresponding PPT simulator.
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Suppose that S can be regarded as the sequential composition of S1 and S2 where S1 never interacts
with the functionality, generates a pair (R, T )

$← D′(1λ) and provides the adversary with the simulated CRS
R and S2 with (R, T ).

Assume that D′ is a trapdoored distribution for D. Let DS be an n-party indistinguishability-preserving
distributed sampler for (D,D′). Let Π′ be the sequential composition of DS with Π. Then, Π′ implements
F against active PPT adversaries in the UC model with static corruption.

Observe that the round complexity of the protocol Π′ has only increased by one. The idea at the base
of the proof is rather immediate: the protocol Π can be reformulated as a game with oracle distribution
G0. In the latter, the special messages are all exchanged at the beginning of the session. In a similar way,
the simulation can be reformulated as a game with trapdoored oracle distribution G1 in which the auxiliary
information given to D′ is the empty string. To be precise, the simulation of Π corresponds to the trapdoor
mode of G1, the no-trapdoor mode of G1 is instead identical to G0. Trapdoor security is an immediate
consequence of the UC-security of Π. Chosen-sample indistinguishability is instead for free as G0 and the
no-trapdoor mode of G1 are identical. That is enough to argue that the compiled games G′0 and G′1 are
indistinguishable too. It is straightforward to notice that if we reformulate the compiled protocol Π′ as a
game, we obtain G′0. To terminate the proof, we notice that G′1 easily leads to a simulator S ′ for Π′ and F.

Proof. Let H be the set of honest parties. For every i ∈ [n], let idi denote the identity of the i-th party.
A single real-world execution of Π can be formulated as a n-party game with oracle distribution G0. In

such game, the challenger Ch0 immediately sends (Sample, i) for every i ∈ H. Then, it waits for the adversary
to send (Sample, i) for every i 6∈ H. It ignores all other communications received before that. Then, Ch0

runs the protocol Π with A on behalf of the honest parties.
In a similar way, a single ideal-world execution, can be rephrased as a n-party game with trapdoor oracle

distribution G1 = (D′,Ch1) where the challenger Ch1 behaves as follows:

1. It immediately sends (Sample, i) for every i ∈ H, it sets aux′ to be the empty string.

2. It waits for the adversary to send (Sample, i) for every i 6∈ H. It ignores all other communications
received before that.

3. If it receives only a sample R, it executes Ch0 providing it with R

4. It it receives a pair (R, T ), it runs S2 along with F.

By the UC security of Π, G1 satisfies trapdoor security. Moreover, it is immediate to see that the games G0

and G1 are perfectly chosen-sample indistinguishable.
Since DS is indistinguishability-preserving, the compiled games G′0 and G′1 are still indistinguishable.

Observe that if we reformulate the real-world execution of Π′, we obtain G′0.
We now consider the simulator S ′ that generates the distributed sampler CRS crs using (crs, ζ)

$←
SimSetup(1λ). In every session sid = (tag, idj1 , . . . , idjn) of the protocol Π′ where idj1 , . . . , idjn denote the
identities of the parties involved, S ′ performs the following operations

1. pick i such that ji ∈ H

2. ∀l 6= i s.t. jl ∈ H : Ul
$← DS.Gen(1λ, sid, l, crs)

3. (Ui, ξ)
$← SimGen(1λ, sid, i, ζ)

4. send (Ul)jl∈H to the adversary on behalf of the honest parties

5. wait for (Ul)jl 6∈H from the adversary

6. (R, T )← Trap
(
ξ, (Ul)l∈[n]

)
7. run S2(1λ, R, T ) interacting with the functionality F and the adversary.
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Observe that if we reformulate the interaction between F, S ′ and the adversary as a game, we obtain G′1.
We conclude that no active PPT adversary can distinguish between Π′ and the composition of F and S ′.
This terminates the proof.

In some cases, when the first round of interaction in Π is independent of the CRS, indistinguishability-
preserving distributed samplers allow removing the CRS without affecting the round complexity. The result
is formalised below.
Theorem 4.5.14. Assume the existence of authenticated point-to-point channels and a broadcast medium.
Let Π be an n-party protocol implementing a PPT functionality F against active PPT adversaries in the UC
model with static corruption. Let S be the corresponding PPT simulator. Suppose that Π can be rewritten
as the sequential composition of a one-round protocol Π1 with no CRS and a protocol Π2 that relies on a
CRS R generated according to the distribution D(1λ).

Suppose that S can be regarded as the sequential composition of S1, S2 and S3 where:

• S1 never interacts with the functionality, generates values (R, T )
$← D′(1λ) and provides the adversary

with the simulated CRS R and S3 with (R, T ).

• S2, never interacts with the functionality, generates the first-round messages of the honest parties using
Π1 and delivers them to the adversary. It passes its internal state to S3.

Assume that D′ is a trapdoored distribution for D. Let DS be an n-party indistinguishability-preserving
distributed sampler for (D,D′). Let Π′ be the composition of DS with Π where DS and Π1 are run in parallel.
Then, Π′ implements F against active PPT adversaries in the UC model with static corruption.

The proof of Theorem 4.5.14 follows the blueprint of the proof of Theorem 4.5.13. Once again, we refor-
mulate Π as a game with oracle distribution G0. This time the special messages are all sent simultaneously
with the first round of communications. Since the simulator S generates the first round messages exactly
as in Π, we can design a game with trapdoored oracle distribution G1 in which the trapdoor mode is a
reformulation of the ideal world whereas the no-trapdoor mode is identical to G0. Trapdoor security is a
consequence of the UC-security of Π, chosen-sample indistinguishability instead comes for free as before.
The rest remains as in the proof of Theorem 4.5.13.

Proof. Let H be the set of honest parties. For every i ∈ [n], let idi denote the identity of the i-th party.
As before, a single real-world execution of Π can be formulated as a n-party game with oracle distribution

G0. In such game, the challenger Ch0 immediately sends (Sample, i) for every i ∈ H. Simultaneously, it sends
the messages of the honest parties in protocol Π1. Then, it waits for the adversary to send (Sample, i) for
every i 6∈ H along with the messages of the corrupted players in Π1. Finally, Ch0 runs the protocol Π2 with
A on behalf of the honest parties.

In a similar way, a single ideal-world execution, can be rephrased as a n-party game with trapdoor oracle
distribution G1 = (D′,Ch1) where the challenger Ch1 behaves as follows:

1. It runs S2. The messages generated by S2 are delivered to the adversary in conjunction with (Sample, i)
for every i ∈ H. The challenger Ch1 also outputs the empty string aux′.

2. It waits for the adversary to send (Sample, i) for every i 6∈ H, along with the first-round messages of
the corrupted parties.

3. If it receives only a sample R, it executes Π2 on behalf of the honest parties using R as CRS.

4. It it receives a pair (R, T ), it runs S3 along with F. The simulator S3 is given (R, T ) and the messages
of the corrupted players in Π1.

Notice that if Ch1 receives R but not the trapdoor T , the view of the adversary is the same as in Π. So, by
the UC security of Π, G1 satisfies trapdoor security. Moreover, it is immediate to see that the games G0 and
G1 are perfectly chosen-sample indistinguishable.
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Since DS is indistinguishability preserving, the compiled games G′0 and G′1 are still indistinguishable.
Observe that if we reformulate the real-world execution of Π′ as a game, we obtain G′0.

We now consider the simulator S ′ that generates the distributed sampler CRS crs using (crs, ζ)
$←

SimSetup(1λ). In every session sid = (tag, idj1 , . . . , idjn) of the protocol Π′ where idj1 , . . . , idjn denote the
identities of the parties involved, S ′ performs the following operations

1. pick i such that ji ∈ H

2. ∀l 6= i s.t. jl ∈ H : Ul
$← DS.Gen(1λ, sid, l, crs)

3. (Ui, ξ)
$← SimGen(1λ, sid, i, ζ)

4. generate the first-round messages of the honest parties in Π1 following the protocol. Provide S3 with
the view of the honest players.

5. send (Ul)jl∈H to the adversary along with the messages generated in the previous step.

6. wait for (Ul)jl 6∈H and the corrupted player messages in Π1 from the adversary

7. (R, T )← Trap
(
ξ, (Ul)l∈[n]

)
8. run S3(1λ, R, T ) interacting with the functionality F and the adversary. S3 is also given the messages

of the corrupted players in Π1.

Observe that if we reformulate the interaction between F, S ′ and the adversary as a game, we obtain G′1.
We conclude that no active PPT adversary can distinguish between Π′ and the composition of F and S ′.
This terminates the proof.

Generalisations. Sometimes, indistinguishability-preserving distributed samplers can be used to remove
CRSs even from UC-secure protocols that satisfy neither of the hypothesis of Theorem 4.5.13 and Theo-
rem 4.5.14. For instance, in some cases, we can let the simulated CRS depend on auxiliary information
aux′ provided by the functionality. In order for the proofs to go through, however, we need to ask that
indistinguishability between real world and ideal world holds even when aux′ is leaked to the adversary.

Theorem 4.5.14 can also be generalised in the sense that the simulator S does not strictly need to follow
the protocol in the first round. The important thing, indeed, is to be able to successfully terminate the
simulation even if S1 abruptly refuses to provide the trapdoor T and instead provides a sample R chosen
by the adversary (S can even ask the functionality F to reveal its internal state when that happens). That
would ensure chosen-sample indistinguishability.

The limits of indistinguishability-preserving. Although indistinguishability-preserving distributed
samplers allow removing CRSs from a broad range of UC secure protocols, we know that there exist con-
structions for which this fails. One example in the protocol ΠD in which, after being provided with a CRS
R sampled according to D(1λ), all the parties output R. This protocol trivially implements the function-
ality FD that generates a sample from D(1λ) and provides it to all the parties. If indistinguishability-
preserving distributed samplers worked for this case we would obtain a distributed sampler for D satisfying
the simulation-based definition of [ASY22]. We know that this is impossible [ASY22, AOS23].

4.6 Lossy Distributed Samplers
In this section, we introduce a new variant of distributed sampler called lossy distributed samplers. On their
own, lossy distributed samplers are not sufficient to achieve hardness or indistinguishability preservation.
However, they are a useful stepping stone towards our goal.
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The construction of [ASY22] and its problems with rushing adversaries. In [ASY22], Abram,
Scholl and Yakoubov presented a distributed sampler achieving security against semi-malicious non-rushing
adversaries in the UC model. In other words, the protocol implements the ideal functionality that provides
all the parties with a random sample from D(1λ). The construction does not rely on random oracles nor
CRSs.

There is a property that allows all this: output programming. Specifically, given any distributed sampler
messages (Ûj)j 6∈H for the corrupted parties and a random sample R̂ from D(1λ), it is possible to generate
fake messages for the honest parties such that, when used in conjunction with (Ûj)j 6∈H , the output of the
protocol is R̂. These fake messages are indistinguishable from the real ones, so no adversary is able to tell if
the output was programmed or not.

This property is sufficient to achieve security against non-rushing adversaries in the UC model. Indeed,
in this setting, the simulator gets to know the messages of the corrupted parties before generating those of
the honest players. So, it can just send fake messages that are programmed to output R̂, the sample received
from the functionality. In some sense, the simulator is leveraging rushing against the adversary.

The strategy, however, fails against rushing adversaries. Now, indeed, the adversary receives the honest
messages first and then it chooses what to send on behalf of the corrupted players. The simulator can still
try to program some of the outputs of the distributed sampler, but it can apply the technique only a limited
number of times: the samples provided by the functionality have large entropy and so, it is impossible to
“hide” many of them in the messages of the honest parties. In conclusion, if the messages of the corrupted
players are chosen at random, the simulator cannot predict the choice of the adversary, so, with overwhelming
probability, the output of the protocol will not have been programmed.

Unfortunately, the issue we highlighted is not only restricted to the construction of [ASY22], it is part
of a more general problem formalised by Abram, Obremski and Scholl in [AOS23]: without random oracle,
distributed samplers with UC security against rushing adversaries are essentially impossible. The reason is
that, in the protocol, we would like the entropy of the output conditioned on the messages of any subset S
of the parties to be high, i.e. H

(
R|(Ui)i∈S

)
= ω(log λ). If that was not the case, an adversary corrupting

all the parties in S would have too much influence over the output of the protocol, compromising security.
On the other hand, in the ideal world, we would like the simulator to generate fake honest messages so that
H
(
R|(Ui)i∈H

)
is small, namely O(log λ). In this way, we can hope to hide ideal samples in the output space

so that, even if the adversary decides the messages of the corrupted parties after seeing (Ui)i∈H , the output
of the protocol will be an ideal sample with high probability. The results presented by Abram, Obremski
and Scholl in [AOS23] suggest that, for any such simulator, it is possible to distinguish between the real
(Ui)i∈H and the simulated ones.

Introducing lossy distributed samplers. We move back to our goal: building hardness-preserving and
indistinguishability-preserving distributed samplers. Although we are not aiming for UC security anymore,
having a way to control the output of the distributed sampler is still a desirable property that would simplify
our task. In this context, the discussion about entropy in the previous paragraph raised a point we need to
face. We do this by introducing the notion of lossy distributed sampler.

A lossy distributed sampler is a distributed sampler having two modes of operation. In the standard
mode, for every non-empty H ⊆ [n], the entropy H

(
R|(Ui)i∈H

)
will remain high, namely ω(log λ). In this

way, we can make sure that the influence of the adversary on the protocol is limited. By switching to lossy
mode, however, the messages of the honest parties restrict the output in a set of polynomial size, with high
probability. In other words, in the lossy mode, the outputs of the protocol becomes predictable. This allows
us to deal with rushing.

Unavoidably, an adversary can always distinguish between a distributed sampler in standard mode and
one in lossy mode 8. However, lossy distributed samplers permit making the distinguishability advantage
arbitrarily small: for every polynomial p(λ) and inverse polynomial function δ(λ), we can set the parameters
of the lossy mode so that no adversary running in time at most p(λ) can distinguish between the standard

8In the standard mode, running the protocol twice produces different outputs with overwhelming probability, in lossy mode,
instead, there is a non-negligible probability of obtaining a collision.
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mode and the lossy mode with advantage greater than δ(λ). Observe that this property strongly resembles
the one of ELFs [Zha16]. This is not a coincidence, as ELFs will be one of the building blocks for lossy
distributed samplers.

We now present the precise definition.
Definition 4.6.1 (Lossy distributed sampler). An lossy distributed sampler for AClass is an n-party distributed
sampler DS = (Setup,Gen,Sample) for which there exists a tuple of PPT algorithms (LossySetup, LossyGen,
Project,Extract) with the following syntax:

• LossySetup is randomised and takes as input the security parameter and an integer q ∈ N. The output
is a lossy distributed sampler crs, the CRS trapdoor ζ.

• LossyGen is uniform, randomised and takes as input the security parameter, a session identity sid, an
index i ∈ [n] and the CRS information ζ. The output is a lossy distributed sampler message Ui and
the extraction trapdoor ξ.

• Project is uniform, deterministic and takes as input the CRS trapdoor ζ, n distributed sampler messages
(Ui)i∈[n] and a session identity sid. The output is an element z.

• Extract is uniform, deterministic and takes as input an extraction trapdoor ξ and a value z. The output
is a sample R.

A lossy distributed sampler satisfies the following properties.

• (Arbitrarily small advantage). For every polynomial p(λ) and inverse polynomial function δ(λ),
there exists a polynomial q(λ) such that every adversary A ∈ AClass running in time at most p can
win the game in Figure 4.26 with advantage asymptotically smaller than δ.

• (Small support). For every polynomial q(λ), there exists a negligible function negl(λ) such that, for
every session identity sid and index i ∈ [n],

Pr

[∣∣Suppζ∣∣ > q(λ)

∣∣∣∣∣(crs, ζ)
$← LossySetup

(
1λ, q(λ)

)
(Ui, ξ)

$← LossyGen(1λ, sid, i, ζ)

]
≤ negl(λ),

where Suppζ :=
{
Project

(
ζ, (Uj)j∈[n], sid

)∣∣(sid, (Uj)j∈[n]

)
∈ {0, 1}∗

}
.

Notice that the lossy mode is split into two parts: a lossy setup LossySetup and a lossy generation
algorithm LossyGen. The lossy setup takes as input the parameter q(λ) and outputs a fake CRS along with
a trapdoor ζ. The lossy generation algorithm takes as input the trapdoor ζ and the index of party i ∈ [n].
The output is the lossy message for Pi. In order to switch the distributed sampler to lossy mode, it is
sufficient that a single party sends a message in lossy mode. When that happens, with high probability, the
output of Sample is obtained by first projecting the exchanged messages in a set of polynomial size and then
deterministically mapping the result into a sample from D(1λ). Observe, however, that our definition does
not guarantee that this occurs with overwhelming probability, but just with probability 1− δ(λ), where δ(λ)
is an arbitrarily small inverse-polynomial quantity. Informally, this means that the lossy mode restricts most
of the outputs of the construction in a set of polynomial size.

In order to make the distinguishability advantage between standard and lossy mode arbitrarily small, it
is important that Project and Extract are hard to compute when the trapdoors ζ and ξ are kept secret.

Regularity of lossy distributed samplers. We now formulate the definition of regular lossy distributed
sampler. Essentially, this consists of a lossy distributed sampler for which the output of the lossy mode is
predictable with inverse-polynomial probability independently of the behaviour of the adversary. Observe
that if the output space was not restricted in a set of polynomial size, this property was unachievable.
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Lossy distributed sampler game
Initialisation: This procedure is run only once, at the beginning of the game.
1. b $← {0, 1}

2. crs0
$← Setup(1λ)

3. (crs1, ζ)
$← LossySetup

(
1λ, q(λ)

)
4. Activate A with 1λ and crsb

5. Receive a set of distinct identities ID := (idi)i∈[m] from A.
New session: This procedure can be queried multiple times and at any point of the game. Upon
receiving any query (NewSession, tag, idj1 , . . . , idjn , i) where the session identity sid := (tag, idj1 , . . . , idjn)
has never been queried before, idjl ∈ ID for every l ∈ [n] and all idjl 6= idjk for every l 6= k, compute the
following.
1. U0

i
$← Gen

(
1λ, sid, i, crs

)
2. (U1

i , ξ)
$← LossyGen

(
1λ, sid, i, ζ

)
3. Provide the adversary with Ui := U bi

4. Store (sid, i, Ui, ξ)

Sample: This procedure can be queried multiple times and at any point of the game. Upon receiving
any query

(
Sample, sid, (Uj)j 6=i

)
where sid denotes the identity of an already initiated session, compute

the following. The same session identity can be queried multiple times.
1. Retrieve (sid, i, Ui)

2. R0 ← Sample(U1, . . . , Un, sid, crs0)

3. R1 ← Extract
(
ξ,Project

(
ζ, (Uj)j∈[n], sid

))
4. Provide the adversary with Rb.

Win: The adversary wins if it guesses b

Figure 4.26: Lossy distributed sampler game

Definition 4.6.2 (Regularity). We say that a lossy distributed sampler (Setup,Gen,Sample, LossySetup,
LossyGen,Project,Extract) is regular if there exists a uniform PPT algorithm Z and a polynomial s(λ, q)
such that, for every polynomial q(λ), with overwhelming probability over the randomness of (crs, ζ)

$←
LossySetup

(
1λ, q(λ)

)
,

Pr
Z

[
Z(ζ) = Project

(
ζ, (Uj)j∈[n], sid

)]
≥ 1

s
(
λ, q(λ)

)
for every

(
sid, (Ui)i∈[n]

)
∈ {0, 1}∗, where the above probability is taken only over the randomness of Z.

Formally, the above definition states that Z allows to predict the output of the projection with inverse-
polynomial probability. Furthermore, the success probability is essentially only over the randomness of Z.
That immediately allows predicting the output thanks to Extract.

Programmability. We finally formalise the notion of programmable lossy distributed sampler. This con-
sists of a construction in which the lossy mode allows hiding an ideal sample R in the output space. In
particular, there will be an element z such that executions that are projected to z will output R with high
probability. Furthermore, the adversary will not be able to tell if one of the outputs was programmed even
if we provide it with z and the trapdoor ζ. The extraction trapdoor ξ will instead remain secret.
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Programmability Game
Each phase is run only once.
Initialisation Phase:

1. b $← {0, 1}

2. (crs, ζ)
$← LossySetup

(
1λ, q(λ)

)
3. Activate A with 1λ, crs and ζ.

Generation Phase:

1. Receive i ∈ [n], sid and z from the adversary.

2. R $← D(1λ)

3. (U0
i , ξ

0)
$← LossyGen

(
1λ, sid, i, ζ

)
4. (U0

i , ξ
1)

$← ProgGen
(
1λ, sid, i, z, R, ζ

)
5. Provide the adversary with Ui := U bi

Sampling Phase:

1. Receive (Uj)j 6=i from the adversary

2. R0 ← Extract
(
ξ0,Project

(
ζ, (Uj)j∈[n], sid

))
3. R1 ← Extract

(
ξ1,Project

(
ζ, (Uj)j∈[n], sid

))
4. If Project

(
ζ, (Uj)j∈[n], sid

)
= z and z 6= ⊥, set R1 ← R.

5. If Project
(
ζ, (Uj)j∈[n], sid

)
= ⊥, set R1 ← ⊥.

6. Provide the adversary with Rb.

Win: The adversary wins if it guesses b

Figure 4.27: Programmability game

Observe that programmability is the only property that guarantees that the outputs of the distributed
sampler look like those of the targetted distribution D(1λ) and no further information is leaked. In Sec-
tion 4.8, we will show that lossy distributed samplers that are regular and programmable are hardness-
preserving.
Definition 4.6.3 (Programmability). We say that a lossy distributed sampler (Setup,Gen,Sample, LossySetup,
LossyGen,Project,Extract) for D is programmable if there exists a uniform PPT algorithm ProgGen such that
no PPT adversary in AClass can win the game in Figure 4.27 with non-negligible advantage.

4.7 Building Lossy Distributed Samplers
In this section, we present a lossy distributed sampler that is regular and programmable. In the non-uniform
setting, the construction relies on a uniformly random CRS which can be reused multiple times. In the
uniform setting, instead, we need no CRS. Security is based, among other primitives, on subexponentially
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secure indistinguishability obfuscation and multi-key FHE. We achieve security against any active adversary
statically corrupting up to n− 1 parties.

The construction of [ASY22]. Our starting point is the semi-malicious distributed sampler of [ASY22,
Section 4], which achieves security against non-rushing adversaries in the plain model.

Our construction inherits the same structure: the distributed sampler message of each party Pi consists
of two obfuscated programs. The purpose of the first one is to generate a pseudorandom string si and
encrypt it under a multi-key FHE public key pki. The random string si will be Pi’s share of the randomness
input into D(1λ). In other words, the output of the distributed sampler will be a sample R obtained by
adding the strings s1, s2, . . . , sn and feeding the result as randomness for D(1λ). We call this first program
the encryption program of party Pi and we denote it by EPi.

The second program instead has the purpose of applying homomorphic operations on the ciphertexts
generated by the encryption programs, deriving an encryption C of the output R. The program terminates
its execution outputting a partial decryption of C using the private counterpart of pki. We call this second
program the decryption program of party Pi and we denote it by DPi. The encryption of sj and the public
key pkj will be derived running EPj inside the code of DPi. The encryption program EPj will be given as
input to DPi for every j 6= i.

To summarise, in order to obtain a random sample R, the parties just feed each decryption program DPi
with the encryption programs (EPj)j 6=i. In this way, they obtain the partial plaintext di. The output will
be derived by performing the final decryption R← FinDec(d1, . . . , dn).

Counteracting the residual function attack. A common issue of one-round MPC protocols is residual
function attacks: the adversary can rerun the protocol in its head keeping the same messages for the honest
parties but using different messages for the corrupted players. In this way, it obtains a different output that
might be correlated to the original one. Observe that the adversary can repeat this attack as many times as
it likes, potentially obtaining a lot of leakage.

In order to prevent this issue in their distributed sampler [ASY22], Abram, Scholl and Yakoubov made
sure that EPi encrypts an independent-looking si for every choice of (EPj)j 6=i. They achieved this by letting
every party Pi choose a hash key hki and providing EPi with a digest yi of (hkj ,EPj)j 6=i under hki (notice
that we cannot directly input (EPj)j 6=i into EPi as the former is significantly larger than the latter). The
encryption program EPi will derive si by feeding yi into a puncturable PRF. The key used for the encryption
will also change depending on (EPj)j 6=i. The technique remains the same as before: by feeding yi into another
puncturable PRF, the program obtains randomness ri and r′i that will be used for the key generation and
the encryption. The hash keys will be broadcast by the parties as part of their message.

Using this strategy, even if an adversary reruns the distributed sampler protocol in its head changing any
(hkj ,EPj), the encryption program EPi will generate an independent looking si and so the new output R′
obtained by the adversary will look independent of the original one. Notice that changing any DPj instead
does not help in learning information about R.

The construction in this paper will keep using the technique of [ASY22]. We sketch the unobfuscated
code of the encryption program EProg in Figure 4.28.

Adjustments in the decryption programs. The modifications to the encryptions programs we added
in the previous paragraph require minor adjustments in the decryption programs. As we have mentioned,
for every j ∈ [n], each DPi needs to evaluate the encryption program EPj to obtain pkj and the encryption
of sj . In order to do this, it needs to compute the digest yj that will be fed into EPj . For this reason, we
need to provide DPi not only with (EPj)j 6=i but also with all the hash keys (hkj)j 6=i. The pair (hki,EPi) will
instead be hardcoded into DPi. In the decryption program, we also hardcode the PRF key that produced
the randomness for the key generation in EPi. This will allow DPi to retrieve the secret key needed for the
partial decryption.

We also introduce another modification to the decryption programs and the construction in general. The
reason for this will be clearer after reading the next paragraphs. Along with hki, EPi and DPi, each party
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EProg[K
(i)
1 ,K

(i)
2 , i]

Hard-coded. The PPRF keys K(i)
1 and K(i)

2 , the index i.
Input. A digest y ∈ {0, 1}t(λ).

1. si ← F1(K
(i)
1 , y)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , y)

3. (pki, ski)← mkFHE.Gen(1λ, i; ri)

4. ci ← mkFHE.Enc(pki, si; r
′
i)

5. Output (pki, ci).

Figure 4.28: The unobfuscated encryption program of party Pi

Pi will now broadcast an almost everywhere extractable NIZK πi proving the well-formedness of (hki,EPi).
In the non-uniform case, this NIZK will require a CRS. Luckily, the latter can be uniformly random (see
Section 4.4.1 and [AWZ23, Section 10.1]). We denote the construction by NIZK. Each decryption program
DPi will now receive the proofs (πj)j 6=i as input and will use them to check the pair (hkj ,EPj) for every
j 6= i. If any of the NIZKs does not verify, the decryption program DPi simply outputs ⊥. We sketch the
unobfuscated code of the decryption program DProg in Figure 4.29.

Circular dependencies between subexponentially secure primitives. Our construction can achieve
security as long as at least one of the random strings si remains private. Since the encryption program EPi
always reveals an encryption of the latter, we need to rely on the security of multi-key FHE. Unfortunately,
we cannot perform a direct reduction as the PRF key that allows retrieving the multi-key FHE private key
is hardcoded into both the encryption and the decryption program. So, in the security proof, we need to
somehow remove the information about ski from EPi and DPi first, and only at that point, we can apply the
multi-key FHE security.

Our goal is to achieve this using subexponentially secure primitives, similarly to what Halevi et al. did in
[HIJ+17]. Specifically, by repeating a hybrid argument for every tuple (hkj ,EPj)j 6=i of well-formed elements,
the programs EPi and DPi will gradually switch from performing the key generation, the encryptions and
the partial decryptions to simulating them [AJJM20]. Notice that the multi-key FHE simulators need to
know the randomness used by all the other parties. The program will extract it from the NIZKs (πj)j 6=i
that are given as input.

In order for our strategy to work, we need to rely on the subexponential security of multi-key FHE. In
particular, if we denote the number of well-formed tuples (hkj ,EPj)j 6=i by N(λ) and the advantage of any
PPT adversary A against the multi-key FHE scheme by AdvAmkFHE(λ), we require that there exists a constant
e ∈ N such that

N(λ) · AdvAmkFHE(λe) = negl(λ)9.

This is because, every time we rely on the simulatability of the partial decryption, the advantage of the
adversary increases by a negligible but non-zero amount. In our proof, we rely on this argument a super-
polynomial number of times, namely at least N(λ), so, at the end, the small advantages might add up to
something non-negligible. If the e described above exists, however, we are sure that, by setting the security
parameter of multi-key FHE to λ′ := λe, this will not happen. The final stage will be indistinguishable from
the initial one.

9To be precise, we will require a strictly stronger property: instead of N , we will use another function M(λ)� N(λ).
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DProg[i, sid,K
(i)
2 ,EPi, hki, σ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the CRS for the extractable NIZK σ.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. If ∃j 6= i such that bj = 0, output ⊥

3. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
4. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

5. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see below)

6. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , yi)

7. (pki, ski)← mkFHE.Gen(1λ, i; ri)

8. di ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ski; ηi

)
9. Output di

The algorithm D̃. On input n random strings s1, s2, . . . , sn ∈ {0, 1}m(λ).

1. s← s1 ⊕ s2 ⊕ · · · ⊕ sn

2. R← D(1λ; s)

3. Output R

Figure 4.29: The unobfuscated decryption program of party Pi

The issue is that N(λ) already depends on λ′. Indeed, every encryption program generates a multi-key
FHE key. We are therefore trapped in a circular dependency. It also turns out that this is not the only one,
it is just the easiest to spot.

Decreasing the entropy of the corrupted messages. We solve our problems using an idea of [ASY22]:
we decrease the entropy of (hkj ,EPj) generating it using a PRG. Each party Pj will now sample a random
λ-bit seed and will use its expansion to generate the PRF keys hidden in EPj , the hash key hkj and to
obfuscate EPj . The NIZK πj will guarantee that the pair (hkj ,EPj) is generated in this way. In other
words, the adversary will be forced to output low-entropy messages. On the other hand, by leveraging the
simulatability of the NIZK, we will be able to send full-entropy messages for the honest parties.

Thanks to this trick, the number of well-formed (hkj ,EPj)j 6=i will be independent of the multi-key FHE
security parameter λ′: the value of N(λ) will be 2λ·(n−1). By choosing e sufficiently large and assuming
subexponential security, we can finally make sure that

N(λ) · AdvAmkFHE(λe) = negl(λ).

This trick fixes all the other circular dependencies too.

Avoiding collisions between well-formed encryption programs. The technique described in the
previous paragraph will also allow us to achieve a nice property: by taking a subexponentially collision
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resistant hash function, we can make sure that, with overwhelming probability over hki
10, there exist no

hash collisions between well-formed tuples (hkj ,EPj)j 6=i. In particular, we choose the hash function security
parameter λ′ so that, for every PPT adversary A,

N(λ)2 · AdvAHash(λ′) = negl(λ),

where AdvAHash(λ
′) denotes the advantage of A against the collision resistance of Hash. Notice that N(λ)2

upper-bounds the number of pairs of well-formed tuples. This of course will increase the size of the digests
but they will still fit into EPi. We will explain how this property is used in the security proof in Section 4.7.2.

Adding a final NIZK to achieve active security. The reader might have noticed that in our blueprint,
nothing prevents an adversary to broadcast malformed decryption programs. In order to contrast this kind of
malicious behaviour, we add a second NIZK to the construction proving the well-formedness of the programs
and the hash key. We rely on a simulation-extractable NIZK, we denote it by NIZK′. Observe that the latter
satisfied multi-theorem zero-knowledge. If we aim for security against non-uniform adversaries, NIZK′ will
require a CRS that can be small and uniformly random. In the uniform setting, if we use the construction
in [AWZ23, Section 9.3], NIZK′ has no CRS. We denote the new proof broadcast by party Pi by π′i. To
summarise, the distributed sampler message of Pi will consists of the tuple Ui := (hki,EPi,DPi, πi, π

′
i).

4.7.1 Introducing ELFs to Achieve Lossy Properties
The construction we sketched above is not lossy: given the messages of the honest parties, the output still
remains highly unpredictable, i.e. H

(
R|(Ui)i∈H

)
= ω(log λ). For this reason, we introduce an ELF in the

construction. When the latter is set in injective mode, the entropy of the output given the honest messages
will remain high. When the ELF is instead in lossy mode, the messages of the honest players will restrict
the output in a set of polynomial size, no matter what the adversary does. The properties of ELFs will also
allow us to make the distinguishability advantage between injective mode and lossy mode arbitrarily small.
That will be fundamental to achieve the first property of lossy distributed samplers (see Definition 4.6.1).

While integrating the ELF in the construction, we need to pay attention to particular conditions. As
mentioned in the technical overview, we want the distributed sampler to be regular and programmable: our
goal is to hide an ideal sample R among the small set of possible outputs allowed by the lossy mode. Any
adversary must have a 1/poly(λ) probability of obliviously selecting R as output of the protocol. We need
also to focus on incorporating the ELF in the construction while keeping the CRS as simple as possible.
Finally, we need to make sure that the protocol supports a polynomial number of parties instead of just a
constant.

Where should we place the ELF? Satisfying all the conditions described above is not trivial. Our
current construction allows the parties to produce a common string that looks random as long as one party
is honest, i.e. the string s := s1 ⊕ s2 ⊕ · · · ⊕ sn. In order to obtain a random looking sample from D(1λ), we
need a common source of entropy, i.e. entropy that can be accessed by all players. The CRS and s are the
only sources of this kind we have at the moment.

After observing this, one could try to achieve the properties we need by feeding s into the ELF, convert
the output into uniform randomness using an extractor and then input the result into the distribution D(1λ).
While adding two CRSs (one for the ELF, one for the extractor), this solution allows to restrict the output
in a set of polynomial size when the ELF is set in lossy mode. However, it lacks programmability: how can
we hide an ideal sample among the outputs without the adversary noticing it? Observe that, using just the
CRSs, the adversary can compute the set of all possible outputs, so the ideal sample would stand out. In
cryptography, programmability is often achieved using puncturable PRFs and obfuscation. The technique
requires the PRF key K to be private and unpredictable. Hiding K in the CRS seems hard, perhaps even
impossible. Another option would be to use s to generate K. The issue is that K needs high entropy, so
we cannot use the output of the ELF, we are forced to use s itself. If we do that, however, the size of the
output space would become superpolynomial.

10The probability is over full-entropy hash keys.
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EProgLs[K
(i)
2 , i]

Hard-coded. The PPRF key K(i)
2 and the index i.

Input. A digest y ∈ {0, 1}t(λ).

1. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , y)

2. (φ, pki, ci)← mkFHE.Sim1(1λ, i; r′′i )

3. Output (pki, ci).

Figure 4.30: The unobfuscated encryption program for the lossy mode

The lossy mode of the distributed sampler. We solve all our problems by relying on subexponentially
secure primitives and making the ELF appear only when the distributed sampler is set in lossy mode.

The lossy mode will produce programs EPi and DPi that differ from the ones in standard mode, we
formally describe them in Figure 4.30 and Figure 4.31. The idea is that EPi and DPi will simulate the
key generation, the encryptions and the partial decryptions. The security of multi-key FHE will guarantee
that the output of the distributed sampler will be the sample given to the multi-key FHE simulator. Such
sample will not coincide with the value hidden in the evaluated ciphertext C, it will be the element produced
by Project and Extract. The former will simply apply an ELF f on (hkj ,EPj)j∈[n]. The latter will use a
puncturable PRF key K to deterministically map each projection into a pseudorandom string s, which will
be used as randomness for D(1λ). Notice that since the ELF is in lossy mode, the image of the projection
will be polynomial in size.

Working out the rest of the details is now easy. The decryption program will be able to run Project and
Extract inside its code as f and K will be hardcoded into it. It will also be able to perform the partial
decryption as it will know the PRF keys hardcoded in the encryption programs that are given as input: it
will extract them from the NIZKs that are provided along with (EPj)j 6=i. When the extraction fails, the
program will simply output ⊥. In order for our strategy to succeed, the lossy setup will simulate the CRSs
σ and σ′. The corresponding trapdoors will also allow us to generate proofs πi and π′i despite the fact that
EPi and DPi are no longer well-formed. The lossy setup will also take care of generating the ELF f . The
size of the image will be q(λ) where q is the polynomial parametrising the lossy mode of the distributed
sampler. A final minor issue is that the second multi-key FHE simulator needs to receive the state produced
by the first simulator. The execution of the former takes place in DPi, whereas the latter is run in EPi.
Thankfully, both executions are made deterministic using the outputs of a puncturable PRF. By storing the
corresponding key in both EPi and DPi, we can rerun the first simulator inside DPi to retrieve the state.

Regularity and programmability of the lossy mode. The above construction can easily be made
regular. It is sufficient to use a regular ELF: by sampling a random element x in the domain [M ], f(x) will
hit all the elements in the support of the projection with inverse-polynomial probability.

The construction is also programmable. Thanks to obfuscation and the security of puncturable PRFs
[SW14], we can easily hide an ideal sample in the output space of the lossy mode distributed sampler.
All we need to do is to puncture K in the right position z. We then modify the decryption program by
hardcoding an ideal sample R along with z and the punctured key. Differently from before, the new program
will compare the output of the ELF with z. When the latter coincide, it will directly feed R to the partial
decryption simulator. It is easy to prove that the adversary is not able to detect whether we hid an ideal
sample in the output space or not.
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DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K, the ELF f .
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

) a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K, z)

9. R̂← D(1λ; s)

10. (φ, pki, ci)← mkFHE.Sim1(1λ, i; r′′i )

11. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

12. Output di
aHere, we simplified the notation: the extractor would output only the PRG seed used to produce (hkj ,EPj). By

the expanding that, it is straightforward to derive K(j)
1 and K(j)

2 .

Figure 4.31: The unobfuscated decryption program for the lossy mode

4.7.2 Proving Security

We present a blueprint of the security proof. Seeing that, in our construction, the projection has small
support is rather straightforward. We therefore focus on the first property of the lossy distributed sampler.
The proof will hold independently of whether AClass represents the class of uniform adversaries or not.

Before starting, we recall our goal: we want to show that for every polynomial p(λ) and inverse-polynomial
function δ(λ), there exists a polynomial q(λ) such that the advantage of all adversaries running in time at
most p(λ) in distinguishing the standard mode from the lossy mode parametrised by q(λ) is asymptotically
smaller than δ(λ). We prove the result through a series of hybrids, starting from the standard mode.

First step: simulating NIZK′. We start the proof by simulating the proof π′i in every NewSession query.
We recall that i denotes the index chosen by the adversary in each of these queries, π′i denotes instead the
simulation-extractable NIZK proving the well-formedness of the message of i-th party. We also modify the
answer to the sampling queries: we start by extracting the witnesses from the NIZKs (π′j)j 6=i selected by the
adversary. If the extraction fails, we answer with ⊥, otherwise, we reply with the output of Sample. This
hybrid is indistinguishable from the previous one due to the simulation-extractability of NIZK′.
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DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the CRS for the extractable NIZK σ, the extraction trapdoors (τ je )j 6=i.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

6. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see Figure 4.29)

7. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , yi)

8. (pki, ski)← mkFHE.Gen(1λ, i; ri)

9. di ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ski; ηi

)
10. Output di

Figure 4.32: Second step: the unobfuscated decryption program of party Pi

Second step: witness extraction in the decryption programs. We proceed by simulating the proof
πi in every NewSession query. We recall that πi is an almost everywhere extractable NIZK proving the well-
fomredness of (hki,EPi). We also modify the decryption program DPi. Specifically, we hardcode extraction
trapdoors (τ je )j 6=i for the almost everywhere extractable NIZK. The label associated with τ je will be (sid, j)
where sid is the session identity queried by the adversary. The program DPi will now try to extract the
witness from the NIZK proofs that are given as input. If any extraction fails, DPi will simply outputs ⊥.
Otherwise, it will perform the usual operations. Notice that now the decryption program will only accept
well-formed inputs. We sketch the operations of the modified program DProg1 in Figure 4.32.

We highlight that, compared to the previous step, the input-output behaviour of DPi changed. However,
the two hybrids will still be indistinguishable thanks to the almost-everywhere extractability of NIZK (see
Lemma 4.4.4 and [AWZ23, Lemma 3]). In the uniform setting, this step requires additional attention. Indeed,
in the reduction to almost-everywhere extractability, the uniform adversary needs to derive the trapdoor τ ′
for NIZK′. The latter cannot be computed in uniform polynomial time. We work around this problem by
choosing NIZK, NIZK′ and a superpolynomial function S(λ) so that NIZK′ is S-deterministic and NIZK is
a-disclosed for every S-computable sequence a. The construction presented in [AWZ23, Section 10.1] allows
this.

Third step: switching to full-entropy. Since the NIZKs are now simulated, we are free to switch to a
full-entropy Ui. Specifically, we generate the hash key hki, the encryption program EPi and the keys hard-
coded into it using full-entropy randomness, instead of the output of a PRG. This stage is indistinguishable
from the previous by the security of the PRG.
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DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K(i)

1 .
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

) a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. R̂← D(1λ; s1 ⊕ · · · ⊕ sn)

8. (φ, pki, ski)← mkFHE.Sim1(1λ, i; r′′i )

9. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

10. Output di

Figure 4.33: Forth step: the unobfuscated decryption program of party Pi

Fourth step: simulating key generation, ciphertexts and partial decryptions. We proceed by
modifying both the encryption program EPi and the decryption program DPi. The new programs will not
perform the multi-key FHE operations as usual, they will instead simulate them. In order to perform such
operation, DPi will use the PRF keys in the encryption programs of the other parties, which will be extracted
from the NIZKs (πj)j 6=i that are given as input. For the moment, the multi-key FHE simulator in DPi will
also need to know the sample R̂ hidden into the joint ciphertext C. The program will reconstruct it using the
PRF keys (K

(j)
1 )j 6=i hidden in the encryption programs (EPj)j 6=i, those used to produce the pseudorandom

strings (sj)j 6=i. In order to compute si, the new program will also have the key K(i)
1 hardcoded. Finally, the

simulator in DPi will need to know that secret information output by the first simulator Sim1, the one that
produced a fake public key and a fake ciphertext in EPi. The decryption program will obtain it by rerunning
Sim1 with the same randomness as in EPi. It is easy to do that as the randomness is a PRF output and the
corresponding key is hardcoded in both EPi and DPi. We sketch the unobfuscated version of the modified
programs EProgLs and DProg2 in Figure 4.30 and Figure 4.33.

We prove that this step is indistinguishable from the previous one using an exponential number of hybrids.
In particular, the number of reductions is proportional to the number of digests of the hash function, i.e.
2t(λ). The proof relies on the reusable semi-malicious security of multi-key FHE, the collision resistance of
the hash function, the security of iO and the one of the puncturable PRF F2, all four subexponential. In
order for the proof to go through, we need to use an injective obfuscator. In this way, we are sure that
EPj uniquely determines the PRF keys K(j)

1 and K(j)
2 , so the NIZK extraction will always lead to the same

values.
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The Standard Mode of the Lossy Distributed Sampler
Setup(1λ):

1. σ $← NIZK.Gen(1λ)

2. σ′ $← NIZK′.Gen(1λ)

3. Output crs := (σ, σ′)

Gen
(
1λ, sid, i, crs := (σ, σ′)

)
:

1. ρ1
$← {0, 1}L1(λ)

2. ρ2
$← {0, 1}L2(λ)

3. W $← {0, 1}λ

4. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W )

5. hki ← Hash.Gen(1λ; u1)

6. EPi ← iO(1λ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Figure 4.28)

7. DPi ← iO(1λ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1) (see Figure 4.29)

8. πi ← NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)
9. π′i

$← NIZK′.Prove
(
σ′, (i, sid, hki,EPi,DPi, πi, σ), (W,ρ1, ρ2)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Sample
((
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n]

, sid, crs = (σ, σ′)
)

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.

3. ∀j ∈ [n] : dj ← DPj
(
(hkl,EPl, πl)l 6=j

)
4. R← mkFHE.FinDec(d1, . . . , dn)

5. Output R

Figure 4.34: The standard mode of the lossy distributed sampler
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Fifth step: embedding the ELF into the decryption program DPi. In this step, we finally integrate
the ELF in the construction. For the moment, the ELF will be set in injective mode.

We observe that at the end of step four, we have finally managed to unlink K(i)
1 from (sj)j 6=i. Previously,

indeed, it was impossible to modifyK(i)
1 without affecting (sj)j 6=i. By changingK(i)

1 , the encryption program
EPi would have become different, consequently all the digests (yj)j 6=i would have changed and, at the end,
we would end up with new PRF outputs (sj)j 6=i. Since all the strings s1, . . . , sn where mutually dependent,
it was hard to analyse how the adversary could affect the distribution of their sum. Now, instead, by the
security of the puncturable PRF, we can finally say that si looks independent of (sj)j 6=i. So, we are sure
that our construction generates pseudorandom samples.

We leverage this fact to modify the decryption program DPi once again, switching to an obfuscation of
DProgLs (see Figure 4.31). The new program will ignore (sj)j 6=i. It will instead feed the inputs (hkj ,EPj)j 6=i
along with the hardcoded pair (hki,EPi) into the injective-mode ELF. The result is then input into a
puncturable PRF. The randomness produced in this way is given to D(1λ). The generated sample will be
input into the partial decryption simulator. We select the ELF so that its domain is sufficiently large to
embed all (hkj ,EPj)j∈[n] into it without causing any collision. In conclusion, in the new program, each tuple
(hkj ,EPj)j 6=i will be mapped to an independent-looking pseudorandom output.

Using a superpolynomial number of hybrids, we prove that step five and step four are indistinguishable.
In particular, we repeat the hybrid arguments for every well-formed tuple (hkj ,EPj)j 6=i, i.e. 2λ·(n−1) times.
Observe that one way the adversary can try to distinguish between step four and step five is by finding two
pairs of inputs (hkj ,EPj)j 6=i, (hk′j ,EP

′
j)j 6=i having colliding digests under hki. Indeed, in step four, the two

inputs would produce the same string si and therefore, the respective outputs would be correlated. In step
five, instead, the adversary would end up with independent looking outputs. We prevent this attack by relying
on the subexponential collision intractability of the hash function so that, with overwhelming probability over
hki, there exist no collisions among the 2λ·(n−1) well-formed tuples (hkj ,EPj)j 6=i. To summarise, we prove
indistinguishability between step four and five by relying on the security of iO, the collision intractability of
the hash function and the security of the puncturable PRFs F and F1, all of them subexponential.

Final step: setting the ELF in lossy mode. At this point, we switch the ELF hidden in DPi into lossy
mode. Notice that step six can be distinguished from step five, however, by properly setting the parameters
of the lossy mode, we can make the distinguishing advantage arbitrarily small. In particular, let p′(λ) be
the total time needed by the challenger and the adversary in step five. We can pick the polynomial q(λ)
parametrising the lossy mode so that no adversary running in time p′(λ) can distinguish between injective
mode and lossy mode with advantage greater than δ/2. In this way, we are sure that the distinguishability
advantage between step zero and step six is at most δ/2 + negl(λ). This step corresponds to the lossy mode
of the distributed sampler.

4.7.3 Formalising the Results
The full description of the standard mode of our distributed sampler is in Figure 4.34. In the construction,
NIZK denotes an almost everywhere extractable NIZK. When we aim for security against non-uniform adver-
saries, NIZK will be chosen-ID zero-knowledge and almost everywhere extractable as in Definition 4.4.3. In
the uniform setting instead, we will rely on simulation almost-everywhere extractability and zero-knowledge
as in [AWZ23, Definition 31]. The NP relation underlying NIZK is

R1 :=


(i, hki,EPi),

W

∣∣∣∣∣∣∣∣
(K

(i)
1 ,K

(i)
2 , u1, u2) := PRG(W )

hki = Hash.Gen(1λ; u1)

EPi = iO(1λ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2)


We also make use of a simulation-extractable NIZK, which we will denote by NIZK′. In the uniform setting,
NIZK′ will be S(λ)-deterministic whereas NIZK will be a-compatible for every S(λ)-computable sequence a.
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F1

(PPRF)

(n − 1) · λ Hash
(CRHF)

iO
(iO)

mkFHE
(mkFHE)

F2

(PPRF)
F

(PPRF)

NIZK
(iOEC
NIZK)

Figure 4.35: In this diagram, we describe the dependencies between the security parameters of the various
subexponentially secure primitives. When a primitive is connected through an arrow to (n− 1) ·λ, we mean
that the advantage of any PPT adversary against the security of the primitive must be negl(λ)/2(n−1)·λ.
When a primitive is connected to Hash, we mean that the advantage of any PPT adversary against the
security of the primitive must be negl(λ)/2t(λ). We recall that t(λ) denotes the length of the digests. When
a primitive is connected to NIZK, we mean that the advantage of any PPT adversary against the security of
the primitive must be negl(λ)/d(λ) where d(λ) is the upper-bound on |VPFEσ,τe | in NIZK.

In other words, NIZK will be secure even if we leak the trapdoor τ ′ for NIZK′. The relation corresponding
to NIZK′ is the following.

R2 :=


(
(i, sid, hki,EPi,

DPi, πi, σ),

(W,ρ1, ρ2)
)
∣∣∣∣∣∣∣∣∣∣
(K

(i)
1 ,K

(i)
2 , u1, u2) := PRG(W )(

(i, hki,EPi),W
)
∈ R1

DPi = iO(1λ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1)

πi = NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)


Above, we used L1 and L2 to denote the length of the randomness used to obfuscate DProg and to prove a
statement using NIZK, respectively.

We rely on an injective and subexponentially secure indistinguishability obfuscator iO. We also use a
multi-key FHE scheme mkFHE that satisfies subexponential reusable semi-malicious security. Let Hash be a
subexponentially collision resistant hash function, outputting digests of length t(λ). We use two subexpo-
nentially secure puncturable PRFs F1 and F2. The first one outputs a pseudorandom string of length equal
to the randomness needed by D(1λ). The second one outputs a pseudorandom string of length equal to the
randomness needed by mkFHE.Gen, mkFHE.Enc, mkFHE.Sim1, mkFHE.PartDec and mkFHE.Sim2. Finally,
we rely on a PRG mapping a λ-bit seed W into a pseudorandom string (K1,K2, u1, u2) where K1 and K2

are PRF keys for F1 and F2 respectively and u1 and u2 are as long as the randomness needed by Hash.Gen
and the obfuscation of EProg respectively.

In Figure 4.36, we formalise the lossy mode of the distributed sampler. Notice that the construction relies
on a subexponentially secure puncturable PRF F . Its outputs are pseudorandom strings that are as long as
the randomness needed by D(1λ). The construction relies also an ELF. We choose the domain of the latter so
that all tuples (hkj ,EPj)j∈[n] fit into it. In Figure 4.37, we present the algorithms used for programmability
and regularity. We describe the dependencies between the subexponentially secure primitives in Figure 4.35.
Theorem 4.7.1. Assume the existence of ELFs and the subexponential security of injective iO, multi-key
FHE, collision resistant hash functions and puncturable PRFs. If AClass denotes the class of non-uniform
adversaries, we also assume the existence of simulation-extractable NIZKs and almost everywhere extractable
NIZKs with unstructured CRS. If instead AClass denotes the class of uniform adversaries, we additionally
assume the existence of simulation-extractable NIZKs and simulation almost everywhere extractable NIZKs
with no CRS.

Then, the construction in Figure 4.34 is a programmable lossy distributed sampler for D(1λ) with security
against AClass. If the ELF is regular, the lossy distributed sampler is also regular. If AClass denotes the
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The Lossy Mode of the Distributed Sampler
LossySetup

(
1λ, q(λ)

)
:

1. (σ, τs, τe)
$← NIZK.SimSetup(1λ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1λ)

3. f $← ELF.Gen(M, q)

4. Output crs := (σ, σ′) and ζ := (σ, σ′, τs, τe, τ
′, f).

LossyGen
(
1λ, sid, i, ζ := (σ, σ′, τs, τe, τ

′, f)
)
:

1. K $← F.Gen(1λ)

2. K(i)
2

$← F2.Gen(1λ)

3. hki
$← Hash.Gen(1λ)

4. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1λ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]) (see Figure 4.31)

7. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

Project
(
ζ = (σ, σ′, τs, τe, τ

′, f),
(
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n]

, sid
)
:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.

3. Output f
(
(hkj ,EPj)j∈[n]

)
.

Extract(ξe = K, z):

1. If z = ⊥, output ⊥.

2. s← F (K, z)

3. Output D(1λ; s).

Figure 4.36: The lossy mode of the distributed sampler
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Programmability and Regularity of the Lossy Distributed Sampler
ProgGen

(
1λ, sid, i, z, R, ζ := (σ, σ′, τs, τe, τ

′, f)
)
:

1. K $← F.Gen(1λ)

2. K∗ ← F.Punct(K, z)

3. K(i)
2

$← F2.Gen(1λ)

4. hki
$← Hash.Gen(1λ)

5. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

6. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
7. DPi

$← iO(1λ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, z, f, R]) (see Figure 4.38)

8. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
9. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Z
(
ζ = (σ, σ′, τs, τe, τ

′, f)
)
:

1. b $← {0, 1}

2. If b = 0, output ⊥.

3. x $← [M ]

4. Output f(x).

Figure 4.37: Programmability and regularity of the lossy distributed sampler

class of non-uniform adversaries, the construction relies on an unstructured CRS whose size is independent
of D(1λ). If AClass denotes the class on uniform adversaries, the construction does not need any CRS.

Moreover, let p′(λ) denote a polynomial upper-bounding the running times of LossySetup, LossyGen and
LossySample. The advantage of an adversary A running in time at most p(λ) in distinguishing between the
lossy mode and the standard mode is

AdvM,q
ELF,A′(λ) + negl(λ),

where A′ is an adversary running in time at most p(λ)2 · p′(λ) and AdvM,q
ELF,A′(λ) denotes the advantage of A′

in distinguishing between the injective mode of the ELF with domain sizeM and its lossy mode parametrised
by q(λ).

Proof. We observe that the second property of the lossy distributed sampler is a trivially implied by the
ELF. Therefore, we focus on the first property, namely that for any polynomial p(λ) and inverse polynomial
function δ(λ), there exists a polynomial q(λ) such that no adversary running in time at most p(λ) can
distinguish between the standard mode and the lossy mode parametrised by q(λ) with advantage greater
than δ(λ). We rely on an hybrid argument.

Hybrid 0. This hybrid corresponds to the game for lossy distributed samplers when the challenger uses
the standard mode of operation.

We recap below the operations performed by Setup(1λ) in this hybrid.
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DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, ẑ, f, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i, a
punctured PRF key K∗, the position ẑ, the ELF f , the ideal sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K∗, z)

9. R̂← D(1λ; s)

10. If z = ẑ, R̂← R

11. (φ, pki, ski)← mkFHE.Sim1(1λ, i; r′′i )

12. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

13. Output di

Figure 4.38: The unobfuscated decryption program for programmability

1. σ $← NIZK.Setup(1λ)

2. σ′ $← NIZK′.Setup(1λ)

3. Output (σ, σ′).

The operations used by Gen
(
1λ, sid, i, crs = (σ, σ′)

)
are instead the following.

1. ρ1
$← {0, 1}L1(λ)

2. ρ2
$← {0, 1}L2(λ)

3. W $← {0, 1}λ

4. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W )

5. hki ← Hash.Gen(1λ; u1)

6. EPi ← iO(1λ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Figure 4.28)
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7. DPi ← iO(1λ,DProg[i, sid,K
(i)
2 ,EPi, hki, σ]; ρ1) (see Figure 4.29)

8. πi ← NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W ; ρ2

)
9. π′i

$← NIZK′.Prove
(
σ′, (sid, i, hki,EPi,DPi, πi, σ), (W,ρ1, ρ2)

)
10. Output Ui := (hki,EPi,DPi, πi, πi).

Hybrid 1. In this hybrid, we simulate the NIZK CRS σ′ and the proof π′i sent in each NewSession query.
We recall that i is the index queried by the adversary. Formally, the CRS of the distributed sample is now
generate as follows.

1. σ $← NIZK.Setup(1λ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1λ)

3. Output (σ, σ′).

The operations performed by the challenger in order to compute Ui in NewSession queries become the
following.

1. W $← {0, 1}λ

2. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W )

3. hki ← Hash.Gen(1λ; u1)

4. EPi ← iO(1λ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Figure 4.28)

5. DPi
$← iO(1λ,DProg[i, sid,K

(i)
2 ,EPi, hki, σ]) (see Figure 4.29)

6. πi $← NIZK.Prove
(
σ, (sid, i), (i, hki,EPi),W

)
7. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
8. Output Ui := (hki,EPi,DPi, πi, π

′
i).

This hybrid is indistinguishable from the previous one due to the multi-theorem zero-knowledge of NIZK′.
In the reduction, we build a PPT adversary B that simulates the lossy distributed sampler game as in
Hybrid 0 to an internal copy of A. The adversary B models the CRS using the element σ′ obtained from
its challenger. In each NewSession query, it generates the proof π′i by querying the corresponding statement
(i, sid, hki,EPi,DPi, πi, σ) and the relative witness (W,ρ1, ρ2) to its challenger. At the end of its execution,
B outputs the same bit as A. So if A succeeds at distinguishing between Hybrid 0 and Hybrid 1, B succeeds
in breaking NIZK′ too. Notice that if A is uniform B is uniform too.

Hybrid 2. In this hybrid, we change the reply to the sampling queries. In particular, for every Ul
provided by the adversary in session sid, we compute

bl ← NIZK′.Verify
(
σ′, π′l, (l, sid, hkl,EPl,DPl, πl, σ)

)
,

wl ← NIZK′.Extract
(
τ ′, π′l, (l, sid, hkl,EPl,DPl, πl, σ)

)
.

If bl = 0 or wl = ⊥, we provide the adversary with ⊥. In all other cases, we provided it with
Sample(U1, . . . , Un, sid, crs).

This hybrid is indistinguishable from the previous one due to the simulation-extractability of NIZK′. Let
M(λ) denote a polynomial upper-bounding the number of sampling queries issued by the adversary. In the
reduction, we build a PPT adversary B that simulates the lossy distributed sampler game as in Hybrid 0 to
an internal copy of A. The adversary B starts its execution by sampling ι $← [M ]. It models the distributed
sampler CRS using the element σ′ obtained from its challenger. In each NewSession query, it generates
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the proof π′i by querying the corresponding statement (i, sid, hki,EPi,DPi, πi, σ) to the simulation oracle. It
replies to the first ι − 1 sampling queries as in Hybrid 1. At the ι-th sampling query

(
Sample, sid, (Ul)l 6=i

)
,

however, B samples j $← [n] \ {i} and outputs π′j , (j, sid, hkj ,EPj ,DPj , πj , σ) where hkj ,EPj ,DPj , πj and π′j
are the elements in Uj .

If A succeeds at distinguishing, it must be that, with non-negligible probability ε(λ), one of its sampling
queries contains a proof that verifies but cannot be extracted. With 1/M(λ) probability, the first proof of
this kind will appear in the ι-th sampling query. So, B will succeed with probability at least ε(λ)/(M · n).
This contradicts the simulation-extractability of NIZK′. Notice that if A is uniform B is uniform too.

Hybrid 3. In this hybrid, we simulate the NIZK CRS σ and the proof πi sent in each NewSession query.
We also modify the decryption program DPi. Instead of verifying the NIZKs that are given as input, the
program extracts the witness from them using trapdoors (τ je )j 6=i we hardcode into it. When extraction of
any NIZK fails, the program outputs ⊥. Each of the trapdoor is obtained as τ je

$← NIZK.Trap
(
τe, (sid, j)

)
.

The distributed sampler CRS is now computed as follows.

1. (σ, τs, τe)
$← NIZK.SimSetup(1λ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1λ)

3. Output crs := (σ, σ′)

The operations performed by the challenger in order to compute Ui in NewSession queries become the
following.

1. W $← {0, 1}λ

2. (K
(i)
1 ,K

(i)
2 , u1, u2)← PRG(W )

3. hki ← Hash.Gen(1λ; u1)

4. EPi ← iO(1λ,EProg[K
(i)
1 ,K

(i)
2 , i]; u2) (see Figure 4.28)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1λ,DProg1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i]) (see Figure 4.32)

7. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Claim 4.7.2. If AClass denotes the class of non-uniform adversaries, Hybrid 3 is indistinguishable from
Hybrid 2 due to the subexponential security of iO and almost-everywhere extractability and the chosen-ID
zero-knowledge of NIZK.

Proof of the claim. We proceed by means of a sequence of indistinguishable hybrids.
Hybrid’ 0. This hybrid corresponds to the game in Hybrid 2.
Hybrid’ 1. In this hybrid, we generate the CRS σ using SimSetup. In the process, we obtain also the

trapdoors τe and τs. Hybrid’ 1 and Hybrid’ 0 are indistinguishable thanks to the first property of almost
everywhere extractable NIZKs.

Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued by A. We proceed
with M(λ) + 1 hybrids indexed by ι = 0, 1, . . . ,M(λ).

Hybrid’ 2.ι. In this hybrid, we reply to the first ι NewSession queries using an obfuscation of DProg1 (see
Figure 4.32). Starting from the (ι+ 1)-th query, we instead send an obfuscation of DProg (see Figure 4.29).
We observe that Hybrid’ 2.0 is identical to Hybrid’ 1. For every ι ∈ [M ], Hybrid’ 2.ι is indistinguishable
from Hybrid’ 2.(ι − 1) thanks to Lemma 4.4.4. In the reduction, we build adversaries B1 and B2 that
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contradict Lemma 4.4.4. The adversary B1 receives σ and τe from the challenger. Then, it simulates the
lossy distributed sampler game as in Hybrid’ 2.(ι − 1) to an internal copy of A. At the ι-th NewSession

query, B generates hki and EPi as usual, then, it outputs the circuit DProg[i, sid,K
(i)
2 ,EPi, hki, σ] erasing

the first two lines (i.e. the NIZKs verification) along with the identities (sid, l)l 6=i and its internal state. The
adversary B2 after receiving the obfuscated program DPi and the internal state of B1 resumes the simulation
of the lossy distributed sampler game with A. It includes DPi as part of the answer Ui to the ι-th NewSession
query of A. It produces the proofs πi and π′i in Ui as in Hybrid 2. At the end of its execution, B outputs
the same bit as A. Observe that if A distinguishes, then (B1,B2) breaks Lemma 4.4.4.

Hybrid’ 3. In this hybrid, we reply to all NewSession queries using an obfuscation of DProg1 (see
Figure 4.32). Notice that Hybrid’ 3 is identical to Hybrid’ 2.M .

Hybrid’ 4. In this hybrid, we simulate the proof πi in each NewSession query. Hybrid’ 3 and Hybrid’
4 are indistinguishable under the chosen-ID zero-knowledge of NIZK. In the reduction, we build a PPT
adversary B that simulates the game as in Hybrid’ 3 to an internal copy of A. The NIZK CRS σ is given by
the zero-knowledge challenger. In every execution of NewSession, the adversary B generates hki,EPi,DPi, π′i
as in Hybrid’ 3. The only difference is that it obtains the extraction trapdoors hardcoded into DPi by
querying

(
Trap, (sid, j)

)
for every j 6= i to the chosen-ID zero-knowledge challenger. The proof πi is obtained

by querying
(Prove, (sid, i), x := (i, hki,EPi), w := W

)
to the chosen-ID zero-knowledge challenger. Observe that B never queries proofs and trapdoors for the same
identity. At the end of its execution B outputs the same bit as A. So if A succeeds in distinguishing, B
breaks the chosen-ID zero-knowledge property of NIZK.

Observe that Hybrid’ 4 is identical to Hybrid 3. This terminates the proof of the claim. �

Claim 4.7.3. If AClass denotes the class of uniform adversaries, Hybrid 3 is indistinguishable from Hybrid
2 due to the subexponential security of iO and the τ ′-disclosed simulation almost-everywhere extractability
and zero-knowledge of NIZK.

Proof of the claim. We proceed by means of a sequence of indistinguishable hybrids.
Hybrid’ 0. This hybrid corresponds to the game in Hybrid 2.
Hybrid’ 1. In this hybrid, we generate the CRS σ using SimSetup. In the process, we obtain also the

trapdoors τe and τs. Hybrid’ 1 and Hybrid’ 0 are indistinguishable thanks to the first property of simulation
almost everywhere extractable NIZKs.

Hybrid’ 2. In this hybrid, we simulate the proof πi in each NewSession query. Hybrid’ 1 and Hybrid’
2 are indistinguishable under zero-knowledge of NIZK. In the reduction, we build a PPT adversary B that
simulates the game as in Hybrid’ 1 to an internal copy of A. The NIZK CRS σ and the value aλ = τ ′

is given by the zero-knowledge challenger. In every execution of NewSession, the adversary B generates
hki,EPi,DPi, π

′
i as in Hybrid’ 1. The proof πi is obtained by querying

(Prove, (sid, i), x := (i, hki,EPi), w := W
)

to the zero-knowledge challenger. At the end of its execution B outputs the same bit as A. So if A succeeds
in distinguishing, B breaks the zero-knowledge property of NIZK.

Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued by A. We proceed
with M(λ) + 1 hybrids indexed by ι = 0, 1, . . . ,M(λ).

Hybrid’ 3.ι. In this hybrid, we reply to the first ι NewSession queries using an obfuscation of DProg1 (see
Figure 4.32). Starting from the (ι+ 1)-th query, we instead send an obfuscation of DProg (see Figure 4.29).
We observe that Hybrid’ 3.0 is identical to Hybrid’ 2. We show that for a random ι

$← [M ], Hybrid’ 3.ι
is indistinguishable from Hybrid’ 3.(ι − 1) thanks to [AWZ23, Lemma 3]. In the reduction, we build an
adversary B that contradicts [AWZ23, Lemma 3]. The adversary B receives σ, τe and aλ = τ ′ from the
challenger. Then, it simulates the lossy distributed sampler game as in Hybrid’ 3.(ι − 1) to an internal
copy of A. In each NewSession query, B generates the simulated proof πi by querying its challenger. At the
ι-th NewSession query, B generates hki and EPi as usual, then, it provides its challenger with the circuit
DProg[i, sid,K

(i)
2 ,EPi, hki, σ] erasing the first two lines (i.e. the NIZKs verification) along with the identities
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(sid, l)l 6=i. Then, it includes the answer DPi from its challenger as part of the distributed sampler message
Ui. Notice that B never queries for a simulated proof with identity (sid, j) for any j 6= i. At the end of its
execution, B outputs the same bit as A. Observe that B is uniform so if A distinguishes, then B breaks
[AWZ23, Lemma 3].

Hybrid’ 4. In this hybrid, we reply to all NewSession queries using an obfuscation of DProg1 (see
Figure 4.32). Notice that Hybrid’ 4 is identical to Hybrid’ 3.M .

Observe that Hybrid’ 4 is identical to Hybrid 3. This terminates the proof of the claim. �

We now proceed by repeating the following sequence of hybrids for ι = 1, . . . ,M(λ),M(λ) + 1 where
M(λ) is a polynomial upper-bound on the number of NewSession queries issued by the adversary. From now
on, all pairs of hybrids can be proven indistinguishable by means of reductions to primitives that are secure
against non-uniform adversaries. For this reason, we do not need to worry anymore on how the reduction
obtains τe and τs.

Hybrid 4.ι.0. In this hybrid, the challenger starts its execution by generating a ELF f
$←

ELF.Gen(M,M). Notice that the latter is in injective mode. The input space is chosen sufficiently big
to embed all tuples (hkj ,EPj)j 6=i into it without collisions.

The challenger generates the answer Ui to the first ι− 1 NewSession queries as follows.

1. K(i)
1

$← F1.Gen(1λ)

2. K(i)
2

$← F2.Gen(1λ)

3. hki
$← Hash.Gen(1λ)

4. K $← F.Gen(1λ)

5. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

6. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
7. DPi

$← iO(1λ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]) (see Figure 4.31)

8. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
9. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
10. Output Ui := (hki,EPi,DPi, πi, π

′
i).

All the remaining NewSession queries are answered as in Hybrid 3. Notice that when ι = 0, Hybrid 4.ι.0 is
identical to Hybrid 2. In all other cases, Hybrid 4.ι.0 is identical to Hybrid 4.(ι− 1).

Hybrid 4.ι.1. In this hybrid, we generate the pair (hki,EPi) in the ι-th NewSession query using full-
entropy randomness instead of by expanding a PRG seed. All the rest remains as in the previous hybrid.
This hybrid is indistinguishable from the previous one by the security of the PRG (the proof is an easy
reduction). The operations performed by the challenger in order to compute Ui in the ι-th NewSession query
become the following.

1. K(i)
1

$← F1.Gen(1λ)

2. K(i)
2

$← F2.Gen(1λ)

3. hki
$← Hash.Gen(1λ)

4. EPi
$← iO(1λ,EProg[K

(i)
1 ,K

(i)
2 , i]) (see Figure 4.28)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
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6. DPi
$← iO(1λ,DProg1[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i]) (see Figure 4.32)

7. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i).

Remark 4.7.4. From now on, we will keep the generation ofK(i)
1 , K(i)

2 and hki implicit. Indeed, the procedure
will remain as in Hybrid 4.ι.1. We do the same for πi and π′i and (τ je )j 6=i.

Hybrid 4.ι.2. In this hybrid, we modify the answer to the sampling queries concerning the ι-th session.
In particular, when the NIZKs verify and we succeed in extracting the witnesses (Wj)j 6=i from the messages
(Uj)j 6=i provided by the adversary, we answer the query as follows.

1. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
2. ∀j 6= i : (K

(j)
1 ,K

(j)
2 , uj1, u

j
2)← PRG(Wj)

3. ∀j ∈ [n] : sj ← F1(K
(j)
1 , yj)

4. R← D(1λ; s1 ⊕ · · · ⊕ sn)

5. Provide R to the adversary.

Observe that this hybrid is identical to the previous one by the perfect correctness of multi key FHE and
the perfect correctness and injectivity of iO. The latter is needed to argue that EPj univocally determines
K

(j)
1 and K(j)

2 .
Hybrid 4.ι.3. In this hybrid, we change both the encryption program EPi and the decryption program

DPi generated for the ι-th NewSession query, switching to an obfuscation of EProgLs (see Figure 4.30) and
DProg2 (see Figure 4.33). All the rest remains as in the previous hybrid. Notice that, at this point, we
removed K(i)

1 from the code of EPi. The operations performed by the challenger in order to compute Ui in
the ι-th NewSession query become the following.

1. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

2. DPi
$← iO(1λ,DProg2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ]) (see Figure 4.33)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Claim 4.7.5. Assuming the subexponential security of iO, of Hash, of the puncturable PRF F2 and of multi-
key FHE, no PPT adversary can distinguish between Hybrid 4.ι.2 and Hybrid 4.ι.3.

Proof of the claim. We select the security parameter of the subexponentially collision resistance hash
function so that, for any PPT adversary,

22λ·(n−1) · AdvACR(λ) = negl(λ).

Let Ω be the set of all the tuples (hkj ,EPj)j 6=i such that each (hkj ,EPj) is generated by expanding a λ-bit
PRG seed as in Figure 4.34. Observe that |Ω| ≤ 2λ·(n−1). We conclude that with overwhelming probability
over hki, there exist no collisions in Ω. Otherwise, the adversary that simply outputs two random elements
in Ω would break the above assumption. We can therefore, prove indistinguishability conditioned on this
event occurring.

We proceed once again by means of a series of hybrids. Their number will however be superpolynomial.
Specifically, we consider the set of all possible digests {0, 1}t(λ) and we set ŷ to its minimum according to
the lexicographical order. We proceed through the following sequence of hybrids gradually increasing ŷ until
it reaches the maximum in {0, 1}t(λ).
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EProg0[K
(i)
1 ,K

(i)
2 , i, ŷ]

Hard-coded. The PPRF keys K(i)
1 and K(i)

2 , the index i, the hybrid index ŷ.
Input. A digest y ∈ {0, 1}t(λ).

1. If y <lex ŷ: (pki, ci)← EProgLs[K
(i)
2 , i](y) (see Figure 4.30)

2. Otherwise, (pki, ci)← EProg[K
(i)
1 ,K

(i)
2 , i](y) (see Figure 4.28)

3. Output (pki, ci)

Figure 4.39: Hybrid ŷ.0: the unobfuscated encryption program of party Pi

Hybrid ŷ.0. In this hybrid, we modify the programs EPi and DPi sent in the ι-th NewSession query. In
particular, instead of obfuscating EProg (see Figure 4.28), we obfuscate EProg0 (see Figure 4.39). Similarly,
instead of obfuscating DProg1 (see Figure 4.32), we obfuscate DProg0

1 (see Figure 4.40). In both these
programs, we hardcode ŷ. If the digest input in EPi is strictly lexicographically smaller than ŷ, the encryption
program performs the same operations as EProgLs (see Figure 4.30), otherwise, it behaves as EProg (see
Figure 4.28). Similarly, if the hash yi of the tuple (hkj ,EPj)j 6=i input in DPi is strictly lexicographically
smaller than ŷ, the decryption program performs the same operations as DProg2 (see Figure 4.33), otherwise,
it behave as DProg1 (see Figure 4.32).

Notice that when ŷ is the minimum of {0, 1}t(λ), the new programs have exactly the same input-output
behaviour as EProg and DProg1. We conclude that, when ŷ is minimum, Hybrid ŷ.0 is indistinguishable from
Hybrid 4.ι.1, by the security of iO. If ŷ is not the minimum, this hybrid will be identical to the previous one
(i.e. Hybrid ŷ′.7 where ŷ′ is the previous value of ŷ).

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. EPi
$← iO(1λ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ]) (see Figure 4.39)

2. DPi
$← iO(1λ,DProg0

1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ]) (see Figure 4.40)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.1. In this hybrid, we modify the encryption program EPi sent in the ι-th NewSession query.
In particular, instead of obfuscating EProg0 (see Figure 4.39), we obfuscate EProg1 (see Figure 4.41). In the
latter, the PPRF key K(i)

2 will now be punctured in position ŷ. Furthermore, we store into EPi, the pair

(p̂ki, ĉi)← EProg[K
(i)
1 ,K

(i)
2 , i](ŷ).

When ŷ is provided as input, EPi will directly output (p̂ki, ĉi). The rest remains as before. Since the input-
output behaviour of EProg1 is the same as for EProg0, no adversary can distinguish between this hybrid and
the previous one under the security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)

3. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

4. (p̂ki, ŝki)← mkFHE.Gen(1λ, i; ri)
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DProg0
1[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K(i)

1 , the hybrid index ŷ.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If Hash
(
hki, (hkj ,EPj)j 6=i

)
<lex ŷ:

di ← DProg2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ]
(

(hkj ,EPj , πj)j 6=i
)
(see Figure 4.33)

2. Otherwise,
di ← DProg1[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i]

(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.32)

3. Output di

Figure 4.40: Hybrid ŷ.0: the unobfuscated decryption program of party Pi

EProg1[K
(i)
1 ,K

(i)
2 , i, ŷ, p̂k, ĉ]

Hard-coded. The PPRF keys K(i)
1 and K(i)

2 , the index i, the hybrid index ŷ, the public key p̂k and
the ciphertext ĉ.
Input. A digest y ∈ {0, 1}t(λ).

1. If y <lex ŷ: (pki, ci)← EProgLs[K
(i)
2 , i](y) (see Figure 4.30)

2. If y = ŷ: (pki, ci)← (p̂k, ĉ)

3. Otherwise, (pki, ci)← EProg[K
(i)
1 ,K

(i)
2 , i](y) (see Figure 4.28)

4. Output (pki, ci)

Figure 4.41: Hybrid ŷ.1: the unobfuscated encryption program of party Pi

5. ĉi ← mkFHE.Enc(p̂ki, si; r
′
i)

6. EPi
$← iO(1λ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Figure 4.41)

7. DPi
$← iO(1λ,DProg0

1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ]) (see Figure 4.40)

8. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.2. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query.
In particular, instead of obfuscating DProg0

1 (see Figure 4.40), we obfuscate DProg1
1 (see Figure 4.42). In

the latter, the PPRF key K
(i)
2 will now be punctured in position ŷ. Now, there are two cases: if there

exists a tuple (hkj ,EPj)j 6=i ∈ Ω such that Hash
(
hki, (hkj ,EPj)j 6=i

)
= ŷ, then, we store into DPi, the partial

decryption
d̂i ← DProg1[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i]

(
(hkj ,EPj)j 6=i

)
.

Notice that, thanks to the subexponential security of Hash, the tuple (hkj ,EPj)j 6=i is univocally defined. If
instead, the tuple (hkj ,EPj)j 6=i we are looking for does not exist, we set d̂i ← ⊥. When the hash of the input
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collides with ŷ, DPi will now directly output d̂i. The rest remains as before. Observe that the input-output
behaviour of DProg1

1 is the same as for DProg0
1. Indeed, the input-output behaviour can change only if the

input consists of a tuple (hkj ,EPj)j 6=i that hashes to ŷ. We know that there exists at most one such tuple in
Ω and, in that case, the output of both DProg1

1 and DProg0
1 is the hardcoded value d̂i. When (hkj ,EPj)j 6=i

in not in Ω, then both DProg1
1 and DProg0

1 output ⊥ as the extraction of the witness from the NIZKs will
always fails. We conclude that no adversary can distinguish between this hybrid and the previous one under
the security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. If such tuple does not
exist, we ignore steps 7-10 below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)

3. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

4. (p̂ki, ŝki)← mkFHE.Gen(1λ, i; ri)

5. ĉi ← mkFHE.Enc(p̂ki, si; r
′
i)

6. EPi
$← iO(1λ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Figure 4.41)

7. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
8. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

9. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see bottom of Figure 4.29)

10. d̂i ← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ŝki; ηi

)
11. DPi

$← iO(1λ,DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ, d̂i]) (see Figure 4.42)

12. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.3. In this hybrid, in the ι-th NewSession query, we generate p̂ki, ĉi and d̂i by inputting full-
entropy randomness ri, r′i and ηi into mkFHE.Gen, mkFHE.Enc and mkFHE.PartDec instead of producing
it using F2(K

(i)
2 , ŷ). This hybrid is indistinguishable from the previous one by the security of puncturable

PRFs.
Remark 4.7.6. Observe that since the number of pairs (i, hki) is finite, for every λ ∈ N, there exists one that
maximises the advantage of the adversary in distinguishing this hybrid from the previous one. We call the
corresponding hash key “the worst hash key”. Of course the worst hash key is chosen among those for which
there exist no collisions in Ω. In the reduction to the security of puncturable PRFs, we can assume that the
new adversary (the one attacking F2) obtains ŷ, the worst hash key ĥki and the tuple (hkj ,EPj)j 6=i in Ω
that is hashed to ŷ (if such tuple exists) as part of its non-uniform advice. The new adversary will simulate
the indistinguishability game between Hybrid ŷ.2 and Hybrid ŷ.3 using these values.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. If such tuple does not
exist, we ignore steps 6-9 below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. si ← F1(K
(i)
1 , ŷ)
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DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ω, d̂i]

Hard-coded. The index i of the party, the session identity sid, a punctured PRF key K∗2 , the
encryption program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors
(τ je )j 6=i, the PPRF key K(i)

1 , the hybrid index ŷ, the partial decryption d̂i.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If Hash
(
hki, (hkj ,EPj)j 6=i

)
<lex ŷ:

di ← DProg2[i, sid,K∗2 ,EPi, hki, σ, (τ
j
e )j 6=i,K

(i)
1 ]
(

(hkj ,EPj , πj)j 6=i
)
(see Figure 4.33)

2. If Hash
(
hki, (hkj ,EPj)j 6=i

)
= ŷ :

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, πj , (j, hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

) a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) di ← d̂i

3. Otherwise,
di ← DProg1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i]

(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.32)

4. Output di

Figure 4.42: Hybrid ŷ.2: the unobfuscated decryption program of party Pi

3. (p̂ki, ŝki)
$← mkFHE.Gen(1λ, i)

4. ĉi $← mkFHE.Enc(p̂ki, si)

5. EPi
$← iO(1λ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Figure 4.41)

6. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
7. ∀j ∈ [n] : (pkj , cj)← EPj(yj)

8. C ← mkFHE.Eval
(
D̃, pk1, c1, . . . , pkn, cn

)
(see bottom of Figure 4.29)

9. d̂i $← mkFHE.PartDec
(
C, (pk1, pk2, . . . , pkn), i, ŝki

)
10. DPi

$← iO(1λ,DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ, d̂i]) (see Figure 4.42)

11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.4. In this hybrid, in the ι-th NewSession query, instead of computing p̂ki, ĉi and d̂i using
mkFHE.Gen, mkFHE.Enc and mkFHE.PartDec, we simulate them. Notice that the multi-key FHE simulator
mkFHE.Sim2 needs to receive the inputs and the randomness used by the other parties. We retrieve the
latter by expanding the PRF keys K(j)

1 and K
(j)
2 hidden in EPj (we recall that (hkj ,EPj)j 6=i denotes the

only tuple in Ω that is hashed to ŷ under hki). Since the obfuscation scheme is injective, K(j)
1 and K(j)

2 are
univocally defined.

This hybrid is indistinguishable from the previous one under the reusable semi-malicious security of
multi-key FHE. For the reduction, we use the same trick as in Hybrid ŷ.3, i.e. we provide the adversary with
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ŷ, the worst hash key, the only preimage (hkj ,EPj)j 6=i of ŷ in Ω along with the PRF keys K(j)
1 ,K

(j)
2 hidden

in each EPj as part of the non-uniform advice string.
The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become

the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we
use K(j)

1 and K(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 4-8

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (φ, p̂ki, ĉi)
$← mkFHE.Sim1(1λ, i)

3. EPi
$← iO(1λ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Figure 4.41)

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

6. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

7. R̂← D(1λ; s1 ⊕ · · · ⊕ sn)

8. d̂i $← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i

)
9. DPi

$← iO(1λ,DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ, d̂i]) (see Figure 4.42)

10. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.5. In this hybrid, in the ι-th NewSession query, we generate p̂ki, ĉi and d̂i using the randomness
generated by F2(K

(i)
2 , ŷ). This hybrid is indistinguishable from the previous one under the security of the

puncturable PRF.
The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become

the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we
use K(j)

1 and K(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 5-9

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

3. (φ, p̂ki, ĉi)← mkFHE.Sim1(1λ, i; r′′i )

4. EPi
$← iO(1λ,EProg1[K

(i)
1 ,K∗2 , i, ŷ, p̂ki, ĉi]) (see Figure 4.41)

5. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
6. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

7. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

8. R̂← D(1λ; s1 ⊕ · · · ⊕ sn)

9. d̂i ← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i; η

′
i

)
10. DPi

$← iO(1λ,DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ, d̂i]) (see Figure 4.42)
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11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.6. In this hybrid, we change the encryption program EPi sent in the ι-th NewSession query.
In particular, we switch back to an obfuscation of EProg0 (see Figure 4.39). This time, however, instead of
hardcoding ŷ, we hardcode the next element in {0, 1}t(λ). We denote it by ŷ′11. The input-output behaviour
of EPi remains the same as in the previous hybrid, so we can argue for indistinguishability based on the
security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, (hkj ,EPj)j 6=i denotes the tuple in Ω that hashes to ŷ under hki. For every j 6= i, we
use K(j)

1 and K(j)
2 to denote the PPRF keys hidden in EPj . If such tuple does not exist, we ignore steps 5-9

below, and we simply set d̂i ← ⊥.

1. K∗2 ← F2.Punct(K
(i)
2 , ŷ)

2. (ri, r
′
i, r
′′
i , ηi, η

′
i)← F2(K

(i)
2 , ŷ)

3. (φ, p̂ki, ĉi)← mkFHE.Sim1(1λ, i; r′′i )

4. EPi
$← iO(1λ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ′]) (see Figure 4.39)

5. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
6. ∀j ∈ [n] : sj ← F1(K

(j)
1 , yj)

7. ∀j 6= i : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

8. R̂← D(1λ; s1 ⊕ · · · ⊕ sn)

9. d̂i ← mkFHE.Sim2

(
φ, ˜dist, R̂, (sj , rj , r

′
j)j 6=i; η

′
i

)
10. DPi

$← iO(1λ,DProg1
1[i, sid,K∗2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ, d̂i]) (see Figure 4.42)

11. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ŷ.7. In this hybrid, we change the decryption program DPi sent in the ι-th NewSession query.
In particular, we switch back to an obfuscation of DProg0

1 (see Figure 4.40). This time, however, instead of
hardcoding ŷ, we hardcode ŷ′12. The input-output behaviour of DPi remains the same as in the previous
hybrid, so we can argue for indistinguishability based on the security of iO.

We observe that the differing-inputs can only consist of tuples (hkj ,EPj)j 6=i that hash to ŷ. Any of these
tuples that does not belong to Ω is mapped to ⊥ by DPi in both hybrids. Indeed, the extraction of the
witnesses from the proofs will always fail. The only differing input can therefore be the only preimage of ŷ
in Ω, if this exists. However, even for such input, DPi behaves the same in the two hybrids.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. EPi
$← iO(1λ,EProg0[K

(i)
1 ,K

(i)
2 , i, ŷ′]) (see Figure 4.39)

2. DPi
$← iO(1λ,DProg0

1[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 , ŷ′]) (see Figure 4.40)

3. Output Ui := (hki,EPi,DPi, πi, π
′
i).

11If ŷ is already the maximum of {0, 1}t(λ), we augment {0, 1}t(λ) with an imaginary element that is strictly greater than all
other values. Let ŷ′ be such value.

12If ŷ is already the maximum of {0, 1}t(λ), we augment {0, 1}t(λ) with an imaginary element that is strictly greater than all
other values. Let ŷ′ be such value.
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When ŷ reaches the maximum in {0, 1}t(λ), Hybrid ŷ.7 is indistinguishable from Hybrid 4.ι.3 due to the
security of iO. Indeed, in Hybrid ŷ.7, for any input, EPi computes the output using EProgLs, whereas DPi
computes the output using DProg2. This terminates the proof of the claim. �

Hybrid 4.ι.4. In this hybrid, we change the decryption program DPi generated in the ι-th NewSession
query, switching to an obfuscation of DProgLs (see Figure 4.31). In the latter, we embed the ELF f used to
reply to the first ι− 1 NewSession queries, and a random PPRF key K.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

3. DPi
$← iO(1λ,DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]) (see Figure 4.31)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

In the hybrid, we also change the reply to the sampling queries concerning the ι-th session.In particular,
when the NIZKs verify and we succeed in extracting the witnesses from the messages (Uj)j 6=i provided by
the adversary, we answer the sampling query as follows.

1. z ← f
(
(hkj ,EPj)j∈[n]

)
2. s← F (K, z)

3. R← D(1λ; s)

4. Provide R to the adversary.

Claim 4.7.7. Assuming the subexponential security of iO, of the puncturable PRFs F and F1 and the
subexponential collision intractability of the hash function, no PPT adversary can distinguish between Hybrid
4.ι.3 and Hybrid 4.ι.4.

Proof of the claim. We select the security parameter of the subexponentially collision resistance hash
function so that, for any PPT adversary,

22λ·(n−1) · AdvACR(λ) = negl(λ).

Observe that |Ω| = 2λ·(n−1). We conclude that with overwhelming probability over hki, there exist no
collisions in Ω. Otherwise, the adversary that simply outputs two random elements in Ω would break the
above assumption. We can therefore, prove indistinguishability conditioned on this event occurring.

We proceed once again through a series of indistinguishable hybrids. Their number will be superpolyno-
mial. In particular, we repeat the following sequence for every ω ∈ Ω (Ω was defined in the proof of Claim
4.7.5). We initially set ω to be the minimum in Ω according to the lexicographical order. Then, we gradually
increment it until we reach the maximum. In the proof, we use ω to denote the tuple (hkj ,EPj)j∈[n] where
(hki,EPi) are the hash key and the encryption program chosen by party Pi, and (hkj ,EPj)j 6=i = ω.

Hybrid ω.0. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,
switching to an obfuscation of DProg0

2 (see Figure 4.43). The new program will have the hybrid index ω
hardcoded. Whenever the input (hkj ,EPj)j 6=i is strictly smaller than ω according to the lexicographical order,
DPi will compute the output using DProgLs (see Figure 4.31), otherwise it will use DProg2 (see Figure 4.33).
Also the answer to the sampling queries is modified: if the adversary queries messages (Uj)j 6=i for the ι-th
session such that (hkj ,EPj)j 6=i is strictly smaller than ω, the challenger replies as in Hybrid 4.ι.4. In the
other cases, it replies as in Hybrid 4.ι.3.

When ω is the minimum in Ω, Hybrid ω.0 is indistinguishable from Hybrid 4.ι.3 by the security of
obfuscation. Indeed, all (hkj ,EPj)j 6=i that are strictly smaller than ω contain a malformed pair (hkj ,EPj).
Since the NIZK extraction fails, DProg2 always outputs ⊥ in these cases. The same does DPi in Hybrid
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DProg0
2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ,K, f, ω]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K2, the encryption
program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K(i)

1 , the PPRF key K, the ELF f , the hybrid index ω.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If (hkj ,EPj)j 6=i <lex ω:
di ← DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]

(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.31)

2. Otherwise,
di ← DProg2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ]
(

(hkj ,EPj , πj)j 6=i
)
(see Figure 4.33)

3. Output di

Figure 4.43: Hybrid ω.0: the unobfuscated decryption program of party Pi

4.ι.4. Clearly, the programs behave identically when (hkj ,EPj)j 6=i ≥lex ω. When ω in not the minimum in
Ω, instead, this hybrid is identical to the previous one, i.e. Hybrid ω̂.4 where ω̂ is the previous value of ω.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following.

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

3. DPi
$← iO(1λ,DProg0

2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ,K, f, ω]) (see Figure 4.43)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ω.1. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,
switching to an obfuscation of DProg1

2 (see Figure 4.44). The keys K(i)
1 and K stored in DPi will now

be punctured in yi = Hash(hki, ω) and f(ω), respectively. We also hardcode the value R̂ that DProg2

feeds into the partial decryption simulator when ω is given as input. The behaviour of DPi remains as in
the previous hybrid, with the exception that when (hkj ,EPj)j 6=i = ω and the NIZK extraction succeeds,
the program directly feeds the hardcoded R̂ into the partial decryption simulator. We highlight that, the
modified program will never need to evaluate K(i)

1 in yi. Indeed, by the subexponential collision resistance
of the hash function, the only preimage of yi in Ω will be ω. Moreover, K will never be evaluated in f(ω)
as the ELF is set in injective mode. Since the input-output behaviour of DPi has not changed (notice that
all the witnesses for the NIZK statement lead to the same ski by the injectivity of iO), this hybrid and the
previous one are indistinguishable under the security of iO.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i. We denote the first PRF key hardcoded in EPj by K(j)

1

(we recall that we are only considering EPjs that are well-formed). For the reduction, since ω is fixed and
the adversary is non-uniform, we can assume it knows K(j)

1 for every j 6= i (the latter is uniquely determined
by ω by the injectivity of iO).

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

3. z ← f(ω)
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DProg1
2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗
1 ,K

∗, f, ω, R̂]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the punctured PRF keys K∗1 and K∗, the ELF f , the hybrid index ω, the sample R̂.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If (hkj ,EPj)j 6=i <lex ω:
di ← DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f ]
(

(hkj ,EPj , πj)j 6=i
)
(see Figure 4.31)

2. If (hkj ,EPj)j 6=i = ω :

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, πj , (j, hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

) a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
(e) ∀j 6= i : sj ← F1(K

(j)
1 , yj)

(f) ∀j ∈ [n] : (rj , r
′
j , r
′′
j , ηj , η

′
j)← F2(K

(j)
2 , yj)

(g) (φ, pki, ci)← mkFHE.Sim1(1λ, i; r′′i )

(h) di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

3. Otherwise,
di ← DProg2[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗
1 ]
(

(hkj ,EPj , πj)j 6=i
)
(see Figure 4.33)

4. Output di

Figure 4.44: Hybrid ω.1: the unobfuscated decryption program of party Pi

4. K∗ ← F.Punct(K, z)

5. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
6. K∗1 ← F1.Punct(K

(i)
1 , yi)

7. ∀j ∈ [n] : sj ← F1(K
(j)
1 , yj)

8. R̂← D(1λ; s1 ⊕ s2 ⊕ · · · ⊕ sn)

9. DPi
$← iO(1λ,DProg1

2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Figure 4.44)

10. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ω.2. In this hybrid, in the ι-th NewSession query, we generate R̂ using true randomness instead
of using s1 ⊕ · · · ⊕ sn where sj ← F1(K

(j)
1 , yj). Furthermore, if the adversary issues any sampling queries

(Uj)j 6=i for the ι-th session where the NIZKs verify, the extraction succeeds and (hkj ,EPj)j 6=i coincides with
ω, the challenger replies with R̂.

Indistinguishability between this hybrid and the previous one is a consequence of the security of the
puncturable PRF F1. Indeed, we are able to substitute si with a truly random string without the adversary
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noticing it. Furthermore, observe that the challenger never needs to evaluate F1 over yi := Hash(hki, ω).
Indeed, with overwhelming probability, there exists no pair of well-formed tuples (hkj ,EPj)j 6=i having yi as
digest.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i. We denote the first PRF key hardcoded in EPj by K(j)

1

(we recall that we are only considering EPjs that are well-formed). For the reduction, since ω is fixed and
the adversary is non-uniform, we can assume it knows K(j)

1 for every j 6= i (the latter is uniquely determined
by ω by the injectivity of iO).

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

3. z ← f(ω)

4. K∗ ← F.Punct(K, z)

5. yi ← Hash(hki, ω)

6. K∗1 ← F1.Punct(K
(i)
1 , yi)

7. R̂ $← D(1λ)

8. DPi
$← iO(1λ,DProg1

2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Figure 4.44)

9. Output Ui := (hki,EPi,DPi, πi, π
′
i).

Hybrid ω.3. In this hybrid, in the ι-th NewSession query, we generate the randomness of R̂ using
F (K, z) where z = f(ω). Indistinguishability is a consequence of the security of the puncturable PRF F .

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i.

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

3. z ← f(ω)

4. K∗ ← F.Punct(K, z)

5. yi ← Hash(hki, ω)

6. K∗1 ← F1.Punct(K
(i)
1 , yi)

7. s← F (K, z)

8. R̂← D(1λ; s)

9. DPi
$← iO(1λ,DProg1

2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗
1 ,K

∗, f, ω, R̂]) (see Figure 4.44)

10. Output Ui := (hki,EPi,DPi, πi, π
′
i).

When the adversary issues any sampling queries (Uj)j 6=i for the ι-th session where the NIZKs verify, the
extraction succeeds and (hkj ,EPj)j 6=i coincides with ω, the challenger replies as follows.

1. z ← f
(
(hkj ,EPj)j∈[n]

)
2. s← F (K, z)
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3. R← D(1λ; s)

Hybrid ω.4. In this hybrid, we modify the decryption program DPi sent in the ι-th NewSession query,
switching back to an obfuscation of DProg0

2 (see Figure 4.43). This time, however, the we do not hardcode
ω into it, but the next element in Ω. We denote it by ω′13. The input-output behaviour of DPi has not
changed since the last hybrid, so, we can argue for indistinguishability under the security of iO.

We observe, indeed, that the behaviour of the program can change only if the input satisfies ω ≤lex

(hkj ,EPj)j 6=i <lex ω
′. If ω <lex (hkj ,EPj)j 6=i <lex ω

′, the programs always output ⊥ because one (hkj ,EPj)
must be malformed, so the NIZK extraction always fails.

We therefore focus on the case (hkj ,EPj)j 6=i = ω. We observe that in this case, the behaviour of the new
DPi is the same as in the previous hybrid. In particular, if the NIZK is not rejected, the value R̂ computed
by the new DPi was the same that was previously hardcoded.

The operations performed by the challenger in order to compute Ui in the ι-th NewSession query become
the following. Below, we rewrite ω as (hkj ,EPj)j 6=i.

1. K $← F.Gen(1λ)

2. EPi
$← iO(1λ,EProg1[K

(i)
2 , i]) (see Figure 4.41)

3. DPi
$← iO(1λ,DProg0

2[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

(i)
1 ,K, f, ω′]) (see Figure 4.43)

4. Output Ui := (hki,EPi,DPi, πi, π
′
i).

We conclude the proof of the claim by observing that when ω reaches the maximum in Ω, Hybrid ω.4 is
indistinguishable from Hybrid 4.ι.4 under the security of iO. Indeed, in Hybrid ω.4, DPi computed all the
outputs running DProgLs. �

Hybrid 5. In this hybrid, we modify the sampling queries. In particular, we do not try anymore to
extract the witnesses from the NIZKs provided by the adversary, we simply verify the proofs. If the check
succeeds, we proceed by inputting (hkj ,EPj)j∈[n] in the ELF, we feed the result into F and we use the output
as randomness for D(1λ). If the verification fails, we reply with ⊥.

This hybrid is indistinguishable from hybrid 4.(M + 1).4. Indeed, an adversary can distinguish if and
only if, in Hybrid 4.(M + 1).4, it can generate a proof that verifies but cannot be extracted. Such adversary
would also be able to distinguish between Hybrid 0 and Hybrid 4.(M + 1).4. However, we proved that such
adversary cannot exist.

Hybrid 6. In this hybrid, we switch the ELF f to lossy mode. Let p′(λ) be a polynomial upper bound on
the running time of the lossy distributed sampler challenger in Hybrid 5 when it interacts with an adversary
running in time a most p(λ). We choose the polynomial q(λ) parametrising the lossy mode so that no
adversary running in time at most p(λ) + p′(λ) can distinguish between the injective mode and the lossy
mode with advantage greater than δ/2.

We highlight that Hybrid 5 and Hybrid 6 can be distinguished with non-negligible advantage. However,
by the security of ELFs, no adversary running in time at most p(λ) can distinguish between them with
advantage greater than δ/2.

In order to conclude the proof, we show that it is possible to choose the security parameters of the
subexponentially secure primitives so that Claim 4.7.5 and Claim 4.7.7 are all true. This is an immediate
consequence of the fact that the dependency graph among subexponentially secure primitives in Figure 4.35
contains no cycles.

Regularity.

Assume that the ELF is regular. We observe that the output of Project is either ⊥ or an element in the image
of f . The output of Z(ζ) is ⊥ with probability 1/2. Otherwise, the output is f(x) where x is uniformly

13If ω is already the maximum of Ω, we augment Ω with an imaginary element that is strictly greater than all other values.
Let ω′ be such value.
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sampled over the domain of f . By the regularity of the ELF, we know that there exists a polynomial
s(logM, q) such that, with overwhelming probability over ELF.Gen(M, q),

Pr
x

[f(x) = z] ≥ 1

s(logM, q)

for every element z in the image of f , where Pr
x

denotes the probability over the randomness of x. Since
logM is polynomial in λ, we conclude that our lossy distributed sampler is regular.

Programmability.

We prove the property by means of a series of indistinguishable hybrids.
Hybrid 0. This hybrid corresponds to the programmability game in which b = 0. In particular, the

distributed sampler message Ui received by the adversary as computed as follows.

1. K $← F.Gen(1λ)

2. K(i)
2

$← F2.Gen(1λ)

3. hki
$← Hash.Gen(1λ)

4. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1λ,DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]) (see Figure 4.31)

7. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

During the sampling phase, after querying Uj := (hkj ,EPj ,DPj , πj , π
′
j) for every j 6= i, the adversary is

provided with a value R computed as follows:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If there exists j ∈ [n] such that bj = 0, output ⊥.

3. z ← f
(
(hkj ,EPj)j∈[n]

)
4. s← F (K, z)

5. Output D(1λ; s).

Hybrid 1. In this hybrid, we modify the decryption program DPi switching to an obfuscation of
DProgPr (see Figure 4.38). In particular, the PRF key K hardcoded in the program will be punctured in
the position z chosen by the adversary. Moreover, we hardcode into the program the value R := D(1λ; s)
where s = F (K, z). When the output of the ELF in the modified decryption program coincides with z, DPi
will directly input R in the partial decryption simulator. We formalise below the operations used for the
generation of Ui.

1. K $← F.Gen(1λ)

2. K∗ ← F.Punct(K, z)

3. s← F (K, z)
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4. R← D(1λ; s)

5. K(i)
2

$← F2.Gen(1λ)

6. hki
$← Hash.Gen(1λ)

7. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

8. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
9. DPi

$← iO(1λ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, z, f, R]) (see Figure 4.38)

10. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
11. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
12. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

Observe that this hybrid is indistinguishable from the previous one thanks to the security of iO.
Hybrid 2. In this hybrid, instead of generating R using the randomness output by F , we use an ideal

sample. If, in the sampling phase, the adversary selects values (Uj)j 6=i such that f
(
(hkj ,EPj)j∈[n]

)
= z 6= ⊥

and, for every j 6= i,
NIZK′.Verify

(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
= 1,

the challenger immediately provides R to the adversary.
This hybrid is indistinguishable from the previous one by the security of the puncturable PRF F . We

formalise below the operations used for the generation of Ui.

1. K $← F.Gen(1λ)

2. K∗ ← F.Punct(K, z)

3. R $← D(1λ)

4. K(i)
2

$← F2.Gen(1λ)

5. hki
$← Hash.Gen(1λ)

6. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

7. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
8. DPi

$← iO(1λ,DProgPr[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, z, f, R]) (see Figure 4.38)

9. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
10. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
11. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξe := K.

We observe that the last hybrid is identical to the programmability game with b = 1.
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The Hardness-Preserving Simulators.
Let q(λ) be the polynomial associated with A.
SimSetupA

(
1λ
)
:

1. (crs, ζ)
$← LossySetup(1λ, q)

2. Output crs and ζ.

SimGenA
(
1λ, sid, i, ζ, R

)
:

1. z $← Z(ζ)

2. (Ui, ξ)
$← ProgGen(1λ, sid, i, z, R, ζ)

3. Output Ui.

Figure 4.45: The hardness-preserving simulators.

4.8 Building Hardness-Preserving Distributed Samplers
We explain the idea behind our result. Consider a PPT adversary A that outputs 1 with non-negligible
probability ε(λ) in the real-world execution of the regular and programmable lossy distributed sampler (see
Figure 4.20). In such execution, the distributed sampler will be in standard mode. We recall that our goal
is to show the existence of a simulator, which depends on A, such that, even in the simulated execution, the
adversary A still outputs 1 with non-negligible probability.

We use a hybrid argument. In the first stage, we switch our distributed sampler to lossy mode. The new
setting is clearly distinguishable from the initial one but, by choosing the polynomial q parametrising the
lossy mode properly, we can make sure that the adversary A still outputs 1 with probability at least ε(λ)/2.

In the next hybrid, we use the regularity of the lossy distributed sampler to argue that the probability
that A outputs 1 and Z guesses the output chosen by the adversary is also non-negligible.

In the final hybrid, we rely on the programmability properties to hide an ideal sample R in the position
guessed by Z. Since the adversary cannot detect any change, A will still have a non-negligible probability
of outputting 1 while picking R as output of the protocol.

From the last hybrid, we can easily obtain the simulators we are looking for. We simulate the CRS using
LossySetup

(
1λ, q(λ)

)
. The choice of q(λ) depends on A. In particular, q(λ) needs to be sufficiently large so

that A cannot distinguish between the first two hybrids with advantage greater than ε(λ)/2. The simulation
of the distributed sampler message is instead performed using ProgGen. The programmed position is sampled
using Z. We formalise the construction in Figure 4.45.
Theorem 4.8.1 (Hardness-preserving distributed sampler). Let DS = (Setup,Gen,Sample,SimSetupA,
SimGenA) be a regular and programmable lossy distributed sampler for D(1λ) against AClass. Then, the
construction described in Figure 4.34 and Figure 4.45 is an n-party hardness-preserving distributed sampler
for D against AClass.

Proof. Let DS = (Setup,Gen,Sample, LossySetup, LossyGen,Project,Extract) be our n-party regular and pro-
grammable lossy distributed sampler for the distribution D(1λ). Let A ∈ AClass be any PPT adversary such
that, in the hardness-preserving game G in Figure 4.20,

Pr
[
GAHP(1λ) = 1

∣∣b = 0
]

= nonegl(λ).

Our goal is to prove that
Pr
[
GAHP(1λ) = 1

∣∣b = 1
]

= nonegl(λ).
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We define ε(λ) := Pr
[
GAHP(1λ) = 1

∣∣b = 0
]
. Since ε(λ) is non-negligible, we know that there exists a

polynomial e(λ) such that for every λ ∈ N, there is a λ ≥ λ such that ε(λ) ≥ 1/e(λ). Let p(λ) be a
polynomial upper-bounding twice the running times of A.

We proceed by means of a Hybrid argument.
Hybrid 0. This stage corresponds to GAHP. In particular, the challenger provides the adversary with

a pair (crs, Ui) generated using the algorithms Setup(1λ) and Gen(1λ, sid, i, crs). The sample given to A is
instead computed using Sample.

Hybrid 1. In this hybrid, we change the distribution of crs, Ui and R. Specifically, we use the algorithms
LossySetup

(
1λ, q(λ)

)
, LossyGen(1λ, sid, i, ζ), Project

(
ζ, (Uj)j∈[n], sid

)
and Extract(ξ, z). The polynomial q(λ)

is chosen so that all adversaries running in time at most p(λ) distinguish between the standard mode and
the lossy mode parametrised by q(λ) with advantage asymptotically smaller than 1/

(
2e(λ)

)
. We denote the

output of the adversary A after the interaction with the modified challenger by GAHP1
.

Claim 4.8.2. In Hybrid 1, Pr
[
GAHP1

(1λ) = 1
]

= nonegl(λ).

Proof of the claim. Assume, by contradiction, that our claim is false. We construct an adversary that
runs in time at most p(λ) distinguishing between the standard mode and the lossy mode with advantage
that is not asymptotically smaller than 1/

(
2e(λ)

)
.

Our new adversary, denoted by B, runs an internal copy of A. The adversary B provides A with the value
crs obtained from its challenger, after which, it obtains i ∈ [n] and sid = (tag, idj1 , . . . , idjn). The adversary
B forwards idj1 , . . . , idjn to its challenger. Next, it issues a NewSession query with identity (sid, i). The
answer Ui is forwarded to A. When A replies with (Uj)j 6=i, the adversary B queries

(
Sample, sid, (Uj)j 6=i

)
to

its challenger and relays the result to A. Finally, B outputs 1 if and only A outputs 1 and the distributed
sampler output is not ⊥.

The distinguishing advantage AdvB(λ) of B is |ε(λ) − negl(λ)|. For λ sufficiently big, we have that
AdvB(λ) is greater than ε(λ) − 1/

(
4e(λ)

)
. So, we conclude that for every λ ∈ N, there exists a λ ≥ λ such

that AdvB(λ) ≥ 3/
(
4e(λ)

)
. Since B at most in time p(λ), we reached a contradiction. Notice that B is

uniform if and only A is uniform. �

Claim 4.8.3. Let E be the event in which Z(ζ) = Project
(
ζ, (Uj)j∈[n], sid

)
. In Hybrid 1, we have

Pr[GAHP1
(1λ) = 1, E] = nonegl(λ).

Proof of the claim. Let V denote the event in which

Pr
Z

[
Z(ζ) = Project

(
ζ, (Uj)j∈[n], sid

)]
<

1

s
(
λ, q(λ)

)
for some (Uj)j∈[n] ∈ {0, 1}∗ where the above probability is taken only over the randomness of Z. By the
regularity of the lossy distributed sampler Pr[V ] = negl(λ). We conclude that

Pr[GAHP1
(1λ) = 1, E] ≥

≥Pr[GAHP1
(1λ) = 1, E, V ] + negl(λ) =

= Pr
[
E
∣∣GAHP1

(1λ) = 1, V
]
· Pr

[
GAHP1

(1λ) = 1, V
]

+ negl(λ) ≥

≥ 1

s
(
λ, q(λ)

) · Pr[GAHP1
(1λ) = 1, V ] + negl(λ) ≥

≥ 1

s
(
λ, q(λ)

) · Pr[GAHP1
(1λ) = 1] + 2 · negl(λ).

We conclude the proof of the claim by observing that Pr[GAHP1
(1λ) = 1] is non-negligible by Claim 4.8.2. �

Hybrid 2. In this hybrid, we generate Ui and ξ using ProgGen(1λ, sid, i, z, R, ζ) where R $← D(1λ) and
z

$← Z(ζ). If the adversary selects (Uj)j 6=i such that Project
(
ζ, (Uj)j∈[n], sid

)
= z and z 6= ⊥, we provide
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the adversary with R. If instead Project
(
ζ, (Uj)j∈[n], sid

)
= ⊥, we provide the adversary with ⊥. The rest

remains as in the previous hybrid. We denote the output of the adversary A after the interaction with the
modified challenger by GAHP2

.

Claim 4.8.4. In the new game GAHP2
, we have

Pr[GAHP2
(1λ) = 1, E] = nonegl(λ).

Proof of the claim. Suppose that our claim is false. Then, we can find a PPT adversary B that breaks
the programmability of the lossy distributed sampler. The adversary B provides the CRS it receives from
its challenger to an internal copy of A. Then, it samples z $← Z(ζ). Notice that ζ is given to B by its
challenger. When A selects sid and i ∈ [n], B sends sid, i, z to its challenger. It then proceeds by relaying all
the communications between A and its challenger. At the end of its execution, B outputs 1 if and only if A
outputs 1, the distributed sampler output is not ⊥ and Project

(
ζ, (Uj)j∈[n], sid

)
= z.

Notice that the advantage of B is∣∣Pr[GAHP1
(1λ) = 1, E]− Pr[GAHP2

(1λ) = 1, E]
∣∣ = nonegl(λ)− negl(λ).

Observe also that B is uniform if and only A is uniform. We reached a contradiction. �

Hybrid 3. In this hybrid, we modify GAHP2
. Instead of providing A with

Extract
(
ξ,Project

(
ζ, (Uj)j∈[n], sid

))
, we now provide it with the value R hidden in Ui. We call the

resulting game GAHP3
.

Claim 4.8.5. In the new game GAHP3
, we have Pr[GAHP3

(1λ) = 1] = nonegl(λ).

Proof of the claim. We prove that Pr[GAHP3
(1λ) = 1, E] = nonegl(λ). The result follows from the fact that

Pr[GAHP3
(1λ) = 1] ≥ Pr[GAHP3

(1λ) = 1, E].
We notice that in both GAHP2

and GAHP3
, when E occurs, the adversary is always provided with either R

or ⊥. In the second case, both GAHP2
(1λ) = 0 and GAHP3

(1λ) = 0. We conclude that, by Claim 4.8.4,

Pr[GAHP3
(1λ) = 1, E] = Pr[GAHP2

(1λ) = 1, E] = nonegl(λ).

�

Hybrid 3 corresponds to the ideal world execution of the hardness-preserving distributed sampler. In par-
ticular, SimSetupA just performs the same operations as LossySetup. The simulator SimGenA(1λ, sid, i, ζ, R)

instead outputs the message Ui generate by ProgGen(1λ, sid, i, z, R, ζ) where z $← Z(ζ). Notice that the
polynomial q(λ) used for the ELF depends on the running time of A. Claim 4.8.5 proves that

Pr
[
GAHP(1λ) = 1

∣∣b = 1
]

= nonegl(λ).

4.8.1 Building Indistinguishability Preserving Distributed Samplers
We now explain why the distributed sampler presented in Section 4.7 is indistinguishability preserving.

Consider any pair of chosen-sample indistinguishable games G0 and G1 where G0 = (D,Ch0) is a game
with oracle distribution and G1 = (D′,Ch1) is a game with trapdoored oracle distribution satisfying trapdoor
security. We start by considering any PPT adversary A whose goal is to distinguish between the compiled
games G′0 and G′1. The proof relies on a hybrid argument beginning from G′0. We will explain the distributed
sampler simulator for the trapdoored mode in the last hybrid.
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The Indistinguishability-Preserving Simulators
SimSetup

(
1λ
)
:

1. (σ, τs, τe)
$← NIZK.SimSetup(1λ)

2. (σ′, τ ′)
$← NIZK′.SimSetup(1λ)

3. f $← ELF.Gen(M,M)

4. Output crs := (σ, σ′) and ζ := (σ, σ′, τs, τe, τ
′, f)

SimGen
(
1λ, sid, i, ζ := (σ, σ′, τs, τe, τ

′, f), aux
)
:

1. K $← F.Gen(1λ)

2. K(i)
2

$← F2.Gen(1λ)

3. hki
$← Hash.Gen(1λ)

4. EPi
$← iO(1λ,EProgLs[K

(i)
2 , i]) (see Figure 4.30)

5. ∀j 6= i : τ je
$← NIZK.Trap

(
τe, (sid, j)

)
6. DPi

$← iO(1λ,DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f, aux]) (see Figure 4.47)

7. πi $← NIZK.SimProve
(
τs, (sid, i), (i, hki,EPi)

)
8. π′i

$← NIZK′.SimProve
(
τ ′, (i, sid, hki,EPi,DPi, πi, σ)

)
9. Output Ui := (hki,EPi,DPi, πi, π

′
i) and ξ := (sid, σ′, σ, f,K, aux).

Trap
(
ξ = (sid, σ′, σ, f,K, aux),

(
Uj = (hkj ,EPj ,DPj , πj , π

′
j)
)
j∈[n]

)
:

1. ∀j ∈ [n] : bj ← NIZK′.Verify
(
σ′, π′j , (j, sid, hkj ,EPj ,DPj , πj , σ)

)
2. If ∃j ∈ [n] such that bj = 0, output (⊥,⊥).

3. z ← f
(
(hkj ,EPj)j∈[n]

)
4. s← F (K, z)

5. Output (R, T )← D′(1λ, aux; s)

Figure 4.46: The indistinguishability-preserving simulators
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The hybrids. In the first stage, we activate the lossy mode of the distributed sampler using some poly-
nomial q(λ). At this point, the output of the construction is restricted in a set of polynomial size. Notice,
however, that we have given the adversary non-negligible distinguishability advantage ε1(λ). We will argue
later why this will not constitute a problem.

In the next hybrid, we proceed by switching from the challenger Ch0 to the challenger Ch1 without
providing the latter with any trapdoor T . The modification cannot be detected by the adversary due to the
chosen-sample indistinguishability between G0 and G1.

Next, using obfuscation and puncturable PRFs, we will gradually change the distribution of the outputs
of the distributed sampler, switching from D to the trapdoored distribution D′. The technique is similar
to the one we used to prove programmability. The main difference is that we repeat the procedure many
times, once for each element in the image of the ELF. Simultaneously, we will start providing Ch1 with the
trapdoors T . Specifically, there will be some hybrids in which part of the distributed sampler outputs are
produced using D whereas the rest is generated using D′. When the distributed sampler output chosen by
the adversary is generated using D′, we provide the corresponding trapdoor T to Ch1 otherwise, we will
not. We will be able to retrieve the trapdoors leveraging the knowledge of the ELF f and the PPRF key
K hardcoded into the lossy-mode messages. The randomness fed into D′ will indeed be F (K, z) where
z = f

(
(hkj ,EPj)j∈[n]

)
, similarly to what happened in DProgLs (see Figure 4.31). To prove that this stage

is indistinguishable from the previous one, we use a hybrid argument that is iterated over the image of the
ELF. Since the latter has polynomial cardinality, we do not need to assume that G1 satisfies subexponential
trapdoor security.

In the last stage, which will correspond to G′1, we switch back to a construction where the outputs
have high entropy. This will be done by setting the ELF in the construction back to injective mode. The
distributions of the outputs will remain as in the previous hybrid, namely, with a trapdoor embedded in
them. In the process, however, we will give the adversary other non-negligible advantage ε2(λ). Notice
anyway, that this stage is independent of the polynomial q(λ).

Why are G′0 and G′1 indistinguishable? Suppose that our adversary A can distinguish between the
initial and the final stage with non-negligible advantage ε(λ). By choosing the polynomial q(λ) in the lossy
mode properly, we can make ε1(λ) and ε2(λ) arbitrarily small non-negligible functions. In particular, we
can make sure that no adversary running in the same time as A can distinguish between G′0 and G′1 with
advantage greater than ε(λ)/2. In this way, we reach a contradiction.

The simulators. From the last stage of our hybrid argument, we can easily derive the simulators for
the indistinguishability-preserving distributed sampler. The algorithm SimSetup will simulate the CRSs for
NIZK and NIZK′ as LossySetup did (see Figure 4.36). Furthermore, it will generate an injective-mode ELF
f . The simulator SimGen will behave exactly as LossyGen (see Figure 4.36) with the exception that, in DPi,
we substitute D(1λ) with D′(1λ, aux). The trapdoor information ξ will contain the ELF f , the PPRF key K
and aux. This information is sufficient to retrieve the trapdoors hidden in the distributed sampler outputs.
We formalise the construction in Figure 4.46.
Theorem 4.8.6 (Indistinguishability-preserving distributed sampler). Let D be an efficient distribution and
let D′ be a trapdoored distribution for D. Assume that ELF is a regular extremely lossy function. Under the
hypothesis of Theorem 4.7.1, the construction DS = (Setup,Gen,Sample,SimSetup,SimGen,Trap) described
in Figure 4.34 and Figure 4.46 is an n-party indistinguishability-preserving distributed sampler for (D,D′)
against AClass.

Observe that in the non-uniform setting, we can instantiate the construction so that the CRS is statisti-
cally close to uniform and its length depends only on the security parameter. In the uniform setting, instead,
we do not need any CRS.

Proof. Let A be any PPT adversary in AClass that distinguishes between G′0 and G′1 with non-negligible
advantage ε(λ). In particular, we know that there exists a polynomial e(λ) such that, for every λ ∈ N,
there exists a λ ≥ λ such that ε(λ) ≥ 1/e(λ). We proceed by means of a hybrid argument starting from
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DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f, aux]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K, the ELF f , the auxiliary information aux.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (j, hkj ,EPj)

)
2. ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)a

3. If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

4. ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
5. ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
6. ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
7. z ← f

(
(hkj ,EPj)j∈[n]

)
8. s← F (K, z)

9. (R̂, T̂ )← D′(1λ, aux; s)

10. (φ, pki, ski)← mkFHE.Sim1(1λ, i; r′′i )

11. di ← mkFHE.Sim2

(
φ, D̃, R̂, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

12. Output di

Figure 4.47: The unobfuscated decryption program for the indistinguishability-preserving simulator

G′0. Let i be the index of a honest party. Let p(λ) be a polynomial upper-bounding the running time of
A. Let p′(λ) be a polynomial upper-bounding the running time of the challengers in G′0 and G′1 when the
adversary runs in time at most p(λ). We select the polynomial q(λ) so that every adversary running in time
at most p(λ) + p′(λ) distinguishes between the standard mode and the lossy mode of both the ELF and the
distributed sampler with advantage definitively smaller than 1/(4e(λ)). Notice that by Theorem 4.7.1, such
polynomial q(λ) exists.

Hybrid 0. This hybrid corresponds to G′0
Hybrid 1. In this hybrid, the challenger witched the distributed sampler to lossy mode. Specifically,

it generates the distributed sampler CRS crs using LossySetup
(
1λ, q(λ)

)
. Furthermore, in every NewSession

query, it generates the last distributed sampler message sent by a honest party using the lossy mode of the
distributed sampler, i.e.,

Ui
$← LossyGen(1λ, sid, i, ζ).

Finally, when all the distributed sampler messages have been exchanged, the challenger computes the output
R using Project and Extract instead of Sample. The rest remains exactly as in G′0.

Notice that, by the first property of lossy distributed samplers, the distinguishable advantage ofA between
Hybrid 0 and Hybrid 1 is asymptotically smaller than 1/(4e(λ)). The reduction is pretty straightforward.
The new adversary B receives the CRS crs from the lossy distributed sampler challenger. It uses the latter
to simulate G′0 to an internal copy of A. When A sends a new session identity sid, B performs the same
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operations as the challenger in G′0. Things change when the last honest party sends its distributed sampler
message. Let idji be the identity of the corresponding party. The adversary B queries (NewSession, sid, i)
to its challenger and relays the answer to A. Then, when all the distributed sampler messages (Uj)j∈[n]

have been exchanged, B queries
(
Sample, sid, (Uj)j 6=i

)
to its challenger and provides the answer to the copy

of Ch0. The new adversary B outputs the same value as A. We observe that if A is uniform, B is uniform
too. Furthermore, the running time of B is at most p(λ) + p′(λ). By the first property of lossy distributed
samplers, the advantage of B is asymptotically smaller than 1/(4e(λ)).

Hybrid 2. In this hybrid, the challenger uses Ch1 instead of Ch0 in every NewSession query. Notice that
Ch1 is just provided with a sample R, but not with any trapdoor T .
Claim 4.8.7. No PPT adversary A can distinguish between Hybrid 1 and Hybrid 2.

Proof of the claim. Let M(λ) be a polynomial upper-bound on the number of NewSession queries issued
by the adversary A. For every ι ∈ [M ] ∪ {0}, we define Hybrid’ ι in which the first ι NewSession queries are
dealt using Ch1, whereas the rest are dealt using Ch0. We prove that, for every ι ∈ [M ], no PPT adversary
can distinguish between Hybrid’ ι− 1 and Hybrid’ ι.

We do this by means of a reduction to the chosen-sample indistinguishability of G0 and G1. In the
reduction, we build a new adversary B having a copy of A. The adversary B starts its execution by producing
a distributed sampler CRS crs using LossySetup. In the process, it obtains also ζ. In the first ι−1 NewSession
queries, B simulates the game in Hybrid 1 using Ch1 as challenger. Starting from the (ι+1)-th query, B uses
instead Ch0. For the ι-th session, B sends the corresponding auxiliary information aux and the set of honest
parties H ′ := {l ∈ [n]|jl ∈ H} to its challenger. It then relays the messages between its challenger and A.
In all the sessions, including the ι-th one, B generates the distributed sampler messages as in Hybrid 1. In
particular, the last honest distributed sampler message sent in every session is produced using LossyGen and
ζ. Furthermore, the output of the distributed sampler is computed using Project and Extract. In the ι-th
session, B gives the output of Extract to its challenger.

We have just proven that Hybrid’ ι−1 and Hybrid’ ι are indistinguishable for every ι ∈ [M ]. We conclude
that Hybrid’ 0 and Hybrid’ M are indistinguishable too. The latter are identical to Hybrid 1 and Hybrid 2
respectively. That ends the proof of the claim. �

Hybrid 3. For any session of identity sid = (tag, idj1 , . . . , idjn), let ji be the index of the last honest party
sending a distributed sampler message. In this hybrid, the challenger generates the decryption program DPi
in Ui by obfuscating the program DProgIP (see Figure 4.47) instead of DProgLs (see Figure 4.31). In DProgIP
we hardcode the auxiliary information aux′ given by Ch1. Notice that we now generate the outputs of the
distributed sampler using the trapdoored distribution D′(1λ, aux′).

After computing the output of the distributed sampler R̂, the challenger provides G1 with a trapdoor T̂ .
The latter is retrieved by rerunning the computations of DPi in clear. Specifically, we perform the following
operations

1. z ← Project
(
ζ, (Uj)j∈[n], sid

)
2. s← F (ξ, z)

3. (R̂, T̂ )← D′(1λ, aux′; s)

We recall that ξ is computed by LossyGen together with Ui and consists of the PPRF key K hardcoded in
DPi.
Claim 4.8.8. Hybrid 3 is computationally indistinguishable from Hybrid 2.

Proof of the claim. Let N(λ) be a polynomial upper-bound on the number of NewSession queries issued
by the adversary A. For every ι ∈ [N ] ∪ {0}, we define Hybrid’ ι in which the first ι NewSession queries
are answered as in Hybrid 3. The remaining sessions are answered as in Hybrid 2. Notice that Hybrid’ 0
is identical to Hybrid 2. Similarly, Hybrid’ N is identical to Hybrid 3. We show that, for every i ∈ [N ],
Hybrid’ ι and Hybrid’ ι− 1 are computationally indistinguishable. That will immediately imply our claim.
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DProg0
Ls[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f, ẑ, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the punctured PRF key K∗, the ELF f , the value ẑ, the sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
6= ẑ, output

di ← DProgLs[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f ]
(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.31)

2. If f
(
(hkj ,EPj)j∈[n]

)
= ẑ, perform the following operations:

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
(e) ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
(f) ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
(g) (φ, pki, ski)← mkFHE.Sim1(1λ, i; r′′i )

(h) di ← mkFHE.Sim2

(
φ, D̃, R, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

(i) Output di

Figure 4.48: The unobfuscated decryption program for Hybrid” 1

We prove that Hybrid’ ι and Hybrid’ ι−1 are indistinguishable by means of a sequence of indistinguishable
hybrids.

Hybrid” 0. In this hybrid, we answer the first ι− 1 NewSession queries as in Hybrid” 3. Starting from
the (ι + 1)-th query, we instead answer as in Hybrid” 2. We deviate from the usual behaviour in the ι-th
query. We sample x $← [M ] and we compute ẑ ← f(x). Then, if ẑ 6= f

(
(hkj ,EPj)j∈[n]

)
, where (hkj ,EPj)j∈[n]

are the hash keys and encryption programs exchanged in the ι-th session, we rewind the adversary and we
retry. Observe that, with overwhelming probability, we succeed within t(λ) tries for some polynomial t. This
hybrid is perfectly indistinguishable from Hybrid’ ι− 1.

Hybrid” 1. In this hybrid, we behave as in Hybrid” 0 with minor changes in the answer to the ι-th
NewSession query. Let idji be the identity of the last honest party sending a distributed sampler message
in the ι-th session. We generate the decryption program DPi by obfuscating DProg0

Ls (see Figure 4.48):
after receiving the input (hkj ,EPj , πj)j 6=i, DProg0

Ls immediately checks if f
(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is

the case, instead of inputting R̂ into the partial decryption simulator, the program inputs R := D(1λ; s)
where s = F (K, ẑ). Such value R is hardcoded into DProg0

Ls. If instead f
(
(hkj ,EPj)j∈[n]

)
6= ẑ, the program

computes the output using K∗ instead of K, where K∗ denotes the puncturing of K in position ẑ. Observe
that the input-output behaviour of the program remains the same as in the previous hybrid. We conclude
that Hybrid” 0 and Hybrid” 1 are indistinguishable due to the security of iO.

Hybrid” 2. In this hybrid, in the ι-th session, instead of generating the sample R hardcoded into
DPi using the randomness produced by F (K, ẑ), the challenger simply samples R $← D(1λ). When all the
distributed sampler messages have been exchanged, the challenger verifies the NIZKs. If any check fails or
f
(
(hkj ,EPj)j∈[n]

)
6= ẑ, the challenger behaves as before. Otherwise, it directly provides R to Ch1. Since we

240



provide the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security
of the puncturable PRF F .

Hybrid” 3. In this hybrid, in the ι-th session, the challenger generates the sample R hardcoded in DPi
using (R, T )

$← D′(1λ, aux′). This hybrid is indistinguishable from the previous one since D′ is a trapdoored
distribution for D.

Hybrid” 4. In this hybrid, in the ι-th session, if all the NIZKs in the distributed sampler messages
verify and f

(
(hkj ,EPj)j∈[n]

)
= ẑ, the challenger provides Ch1 with the trapdoor T produced by D′ along

with R. This hybrid is indistinguishable from the previous one by the trapdoor security of G1.
In the reduction, we build an adversary B holding a copy of A. Upon activation, B simulates the G′0

as in Hybrid” 3 to A. It behaves differently in the ι-th session. Let aux be corresponding auxiliary input
and let sid = (tag, idj1 , . . . , idjn) be the corresponding session identity. Let idji , be the identity of the last
honest party sending a distributed sampler message. The adversary B provides its challenger with aux and
H ′ := {l ∈ [n]|jl ∈ H}. Then, it keeps relaying the messages between its challenger and A. The distributed
sampler messages in the ι-th session are produced by B as in Hybrid” 3, except for the fact that B uses
the sample R provided by its challenger when it is time to generate DPi. When all the distributed sampler
messages have been sent, B checks whether the NIZKs verify and f

(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case,

B keeps relaying the messages between its challenger and A and outputs the same value as A. In the other
cases, B simply outputs a random bit. Observe that the advantage of B against the trapdoor security of G1

is the same as the advantage of A in distinguishing between Hybrid” 3 and 4.
Hybrid” 5. In this hybrid, in the ι-th session, we generate the sample R hardcoded in DPi using

(R, T )
$← D′(1λ, aux′; s) where s = F (K, ẑ). All the rest remains as in the previous hybrid. Since we provide

the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

We now proceed with a sequence of q(λ) hybrids, where q(λ) is the polynomial given as input to LossySetup
(the total number of hybrids is polynomial). Let γ denote the ω-th element in the image of f that differs
from ẑ, if we order the latter according to the lexicographical order. Notice that since the ELF is regular,
it is also strongly efficiently enumerable [Zha16], so, given f , we can efficiently compute γ. Throughout
the proof, we assume that f has an image with at most q(λ) elements and that the challenger successfully
retrieves the whole image of f . This is enough to prove our claim as these events occur with overwhelming
probability.

Hybrid” ω.0. We behave as in Hybrid” 5, except in the ι-th NewSession query. Let idji be the identity of
the last honest party sending a distributed sampler message in the ι-th session. We generate the decryption
program DPi by obfuscating DProg1

Ls (see Figure 4.49): after receiving the input (hkj ,EPj , πj)j 6=i, DProg1
Ls

immediately checks if f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case, it behaves as

DProgIP (see Figure 4.47), otherwise, it performs the same operations as DProgLs (see Figure 4.31).
We observe that if ω = 1, this hybrid is indistinguishable from Hybrid” 5 by the security of iO. Indeed,

x is the minimum in the image of f , so f
(
(hkj ,EPj)j∈[n]

)
will always be greater or equal to x. In other

words, DPi will always behave as DProg0
Ls. If instead ω > 1, this hybrid is identical to the previous one, i.e.

Hybrid” (ω − 1).5.
Hybrid” ω.1. In this hybrid, we change the decryption program DPi of the last honest party sending

a distributed sampler message in the ι-th session. Specifically, instead of obfuscating DProg1
Ls, we obfus-

cate DProg2
Ls (see Figure 4.50). In the latter, the PRF key K is punctured in position γ, we denote it by

K∗. After receiving the input (hkj ,EPj , πj)j 6=i, DProg2
Ls immediately checks if f

(
(hkj ,EPj)j∈[n]

)
<lex γ or

f
(
(hkj ,EPj)j∈[n]

)
= ẑ. If that is the case, it behaves as DProgIP (see Figure 4.47). Otherwise, DProg2

Ls per-
forms the same operations as DProgLs (see Figure 4.31) with only one exception: when f

(
(hkj ,EPj)j∈[n]

)
= γ,

instead of inputting R̂ into the partial decryption simulator, the program inputs R := D(1λ; s) where
s = F (K, γ). Such value R is hardcoded into DProg2

Ls.
All the rest remains as in the previous hybrid. Since the input-output behaviour of DPi has not changed,

this hybrid is indistinguishable from the previous one by the security of iO.
Hybrid” ω.2. In this hybrid, in the ι-th session, instead of generating the sample R hardcoded into DPi

using the randomness produced by F (K, γ), the challenger simply samples R $← D(1λ). Since we provide
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DProg1
Ls[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f, ẑ, aux

′, γ]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the PPRF key K, the ELF f , the value ẑ, the auxiliary information aux′, the hybrid index γ.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ, output

di ← DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f, aux

′]
(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.47)

2. Otherwise, output
di ← DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K, f ]

(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.31)

Figure 4.49: The unobfuscated decryption program for Hybrid” ω.0

the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

Hybrid” ω.3. In this hybrid, in the ι-th session, the challenger generates the sample R hardcoded in DPi
using (R, T )

$← D′(1λ, aux′). This hybrid is indistinguishable from the previous one since D′ is a trapdoored
distribution for D.

Hybrid” ω.4. In this hybrid, in the ι-th session, we generate the sample R hardcoded in DPi using
(R, T )

$← D′(1λ, aux′; s) where s = F (K, γ). All the rest remains as in the previous hybrid. Since we provide
the adversary only with K∗, this hybrid is indistinguishable from the previous one by the security of the
puncturable PRF F .

Hybrid” ω.5. In this hybrid, in the ι-th session, the challenger generates the decryption program DPi
by obfuscating DProg1

Ls (see Figure 4.49), however, instead of hardcoding γ, it will hardcode the next value
in the image of f that differs from ẑ14. In other words, DPi will behave as DProgIP (see Figure 4.47)
whenever f

(
(hkj ,EPj)j∈[n]

)
≤lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ. In the other cases, it will behave as DProgLs

(see Figure 4.31). Notice that the input-output behaviour of DPi has not changed. We conclude that this
hybrid is indistinguishable from the previous one by the security of iO.

When ω = q(λ), the last hybrid is indistinguishable from Hybrid 3 by the security of iO. Indeed, DPi
always behaves as DProgIP as there are no elements in the image of f such that f

(
(hkj ,EPj)j∈[n]

)
>lex γ.

This ends the proof of the claim. �

Hybrid 4. In this hybrid, we switch the ELF to injective mode. Observe that this stage corresponds
to game G′1. Observe that the distinguishability advantage of A against Hybrid 3 and Hybrid 4 is at most
1/(4e(λ)).

We conclude that the distinguishability advantage of A between G′0 and G′1 is at most 1/(2e(λ))+negl(λ).
The latter is asymptotically smaller than 1/e(λ). We reached a contradiction, so no PPT adversary can
distinguish between G′0 and G′1.
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DProg2
Ls[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f, ẑ, aux′, γ, R]

Hard-coded. The index i of the party, the session identity sid, a PPRF key K(i)
2 , the encryption

program EPi, the hash key hki, the extractable NIZK CRS σ and the extraction trapdoors (τ je )j 6=i,
the punctured PRF key K∗, the ELF f , the value ẑ, the auxiliary information aux′, the hybrid index
γ, the sample R.
Input. Set of n− 1 tuples (hkj ,EPj , πj)j 6=i.

1. If f
(
(hkj ,EPj)j∈[n]

)
<lex γ or f

(
(hkj ,EPj)j∈[n]

)
= ẑ, output

di←DProgIP[i, sid,K
(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f, aux′]
(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.47)

2. If f
(
(hkj ,EPj)j∈[n]

)
= γ, perform the following operations:

(a) ∀j 6= i : bj ← NIZK.Verify
(
σ, (sid, j), πj , (hkj ,EPj)

)
(b) ∀j 6= i :

(
K

(j)
1 ,K

(j)
2

)
← NIZK.Extract

(
τ je , πj , (j, hkj ,EPj)

)a

(c) If ∃j 6= i such that bj = 0 or
(
K

(j)
1 ,K

(j)
2

)
= ⊥, output ⊥

(d) ∀j ∈ [n] : yj ← Hash
(
hkj , (hkl,EPl)l 6=j

)
(e) ∀j 6= i : sj ← F1

(
K

(j)
1 , yj

)
(f) ∀j ∈ [n] : (rj , r

′
j , r
′′
j , ηj , η

′
j)← F2

(
K

(j)
2 , yj

)
(g) (φ, pki, ski)← mkFHE.Sim1(1λ, i; r′′i )

(h) di ← mkFHE.Sim2

(
φ, D̃, R, (sj , rj , r′j)j 6=i; η′i

)
(see bottom of Figure 4.29)

(i) Output di

3. Otherwise, output
di ← DProgLs[i, sid,K

(i)
2 ,EPi, hki, σ, (τ

j
e )j 6=i,K

∗, f ]
(
(hkj ,EPj , πj)j 6=i

)
(see Figure 4.31)

Figure 4.50: The unobfuscated decryption program for Hybrid” ω.1
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Chapter 5

Constant-Round Simulation-Secure
Coin Tossing Extension with
Guaranteed Output
Damiano Abram, Jack Doerner, Yuval Ishai, Varun Narayanan

Abstract. Common randomness is an essential resource in many applications. However, Cleve
(STOC 86) rules out the possibility of tossing a fair coin from scratch in the presence of a dishonest
majority. A second-best alternative is a Coin Tossing Extension (CTE) protocol, which uses an
“online” oracle that produces a few common random bits to generate many common random-
looking bits. We initiate the systematic study of fully-secure CTE, which guarantees output even
in the presence of malicious behavior. A fully-secure two-party statistical CTE protocol with
black-box simulation was implicit in Hofheinz et al. (Eurocrypt 06), but its round complexity is
nearly linear in its output length. The problem of constant-round CTE with superlogarithmic
stretch remained open.

We prove that statistical CTE with full black-box security and superlogarithmic stretch must
have superconstant rounds. In the computational setting we prove that with N parties and
polynomial stretch:

• One round suffices for CTE under subexponential LWE, even with Universally Composable
security against adaptive corruptions.

• One-round CTE is implied by DDH or the hidden subgroup assumption in class groups, with
a short, reusable Uniform Random String, and by DCR and QR, with a reusable Structured
Reference String.

• One-way functions imply CTE with O(N) rounds, and thus constant-round CTE for any
constant number of parties.

Such results were not previously known even in the two-party setting with standalone, static
security. We also extend one-round CTE to sample from any efficient distribution, via strong
assumptions including IO.

Our one-round CTE protocols can be interpreted as explainable variants of classical random-
ness extractors, wherein a (short) seed and a source instance can be efficiently reverse-sampled
given a random output. Such explainable extractors may be of independent interest.
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5.1 Introduction
Common randomness is a crucial resource in many applications, yet after 40 years of research, it remains
difficult and sometimes even impossible to generate in many settings. The problem of flipping common
coins was first posed and solved by Blum [Blu82] in the two-party context,1 but his protocol did not ensure
that both parties received an output in the case that one of them deviated from the protocol instructions.
Shortly thereafter, Cleve [Cle86] proved that this “fairness” problem is inherent and unconditional: any
r-round coin-tossing protocol that is guaranteed to output a common bit must suffer an inverse-polynomial
bias of Ω(1/r) if a majority of the participants may be corrupted. In any round of interaction, corrupted
parties may rush to see the messages of the honest parties before they transmit their own, and condition
their responses (or choose not to respond) on the honest parties’ contributions.

Cleve’s bound has left a dichotomy in the plain model: in the face of a dishonest majority, either one must
accept biased coins, or one must accept that the adversary can block the sampling of common coins entirely.
Follow-up works have followed both pathways; for example, Buchbinder et al. [BHLT17] finally achieved
guaranteed output with optimal bias for any constant number of parties, while Lindell [Lin03] showed that
polynomially-many coins can be tossed in constant rounds without guaranteed output, under the minimal
assumption of one-way functions in the plain model. The impossibility of reliable unbiased coin tossing
remains barrier to constructing a wide swath of essential primitives with guarantees against adversarial
denial-of-service in the plain model, such as broadcast and consensus protocols, election protocols, lotteries,
Common Random String (CRS) setup for cryptographic protocols, and many others.

The only means to evade Cleve’s bound is to assume the impossibility away. Suppose there exists an
oracle that outputs a small number n of common random coins when invoked (n can be thought of as a
security parameter). This oracle might be implemented, for example, by a natural process or by an expensive
honest-majority protocol. From such an ideal object, a protocol to flip at least one unbiased coin is trivial.
We call this oracle FnCoin.

Even in settings where unbiased common coins can be found, it is prudent to assume that they are few
or expensive to access. If an ideal n-coin oracle allows one to evade Cleve for the flipping of one coin, can
it do so for n + 1 coins, or more? In other words, can the oracle’s output serve as a seed? A multiparty
protocol that uses an n-coin seed oracle to sample m apparently-uniform common coins for m > n is known
as a Coin Tossing Extension (CTE) protocol; if it invokes the seed oracle t times, we say that it has a stretch
of m− t ·n. Bellare et al. [BGR96] originally introduced the notion of CTE, motivated primarily by concrete
efficiency and without any guarantee that output will be produced in the presence of malicious behavior.
CTE protocols can be thought of as the distributed analogue of classical randomness extractors, and like
classical extractors they require that the uniform seed be independent of the entropy source. This can be
ensured by revealing the seed at the end of the protocol, after the corrupt parties (who exert partial control
over the source) are committed to their contributions, which necessitates an “online” seed oracle, rather than
a seed established ahead of time.

Game-Based Security is not Enough. If we insist only that a coin tossing extension protocol produce
a common output that is indistinguishable from a uniform bit string, then optimal CTE protocols with
guaranteed output and unconditional security are easy to construct. If one way functions exist, then so does
a trivial protocol: the parties simply use the n-bit output of FnCoin to seed a Pseudorandom Generator (PRG),
which can produce a string of m(n) bits for any polynomial m that is indistinguishable from uniform to all
adversaries whose runtimes are also bounded polynomially in n. Notice that this protocol does not involve
any communication at all, apart from invoking the oracle! If one way functions do not exist or the adversary
is unbounded, then the solution need not be much more complicated. Consider the following simple protocol
for N parties:

1With proposed applications to the equitable distribution of formerly-shared property among recent divorcées.
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Protocol 5.1.1. Game-based Statistical Coin Tossing Extension
1. The parties exchange `-bit uniformly-sampled strings over a broadcast channel; if any party fails to

send a string then its string is taken to be all zeroes.

2. The parties query FnCoin, receiving u ∈ {0, 1}n in response.

3. They concatenate their strings to form x ∈ {0, 1}`·N .

4. The parties individually apply a classical randomness extractor: s← Extract(x,u), and output s.

This protocol produces an output ε-close to uniform if there exists an (`, ε)-extractor Extract : {0, 1}`·N ×
{0, 1}n → {0, 1}m [NZ96]. For ε ∈ negl(n) and ` ∈ O(m+n), there is a construction of such extractors from
universal hashing [ILL89].

The simplicity of these protocols comes with a shortcoming: though they may produce outputs indistin-
guishable from uniform, their outputs cannot be used to replace a truly uniform string in any given context.
This can be seen by means of a simple example: suppose that the adversary is challenged to produce an n-bit
representation of m uniformly sampled bits, for n < m. If these m bits are sampled by FmCoin directly, then
the adversary will fail with probability overwhelming in m− n. On the other hand, if the bits are produced
by the simple computational CTE protocol we have just described, then the n-bit intermediate output of the
seed oracle FnCoin is exactly such a representation, and thus the protocol cannot be used in place of the oracle,
even though their outputs are indistinguishable from one another. This is a simple and specific example of
the general separation between game-based security and simulation-based security.2

Simulation-Secure CTE. Simulation-based security—otherwise known as security in the real/ideal-
paradigm [Can00, Gol04]—insists that there exist an efficient simulator algorithm to produce a protocol
transcript given any protocol output, and that the simulated transcript must be indistinguishable from a
transcript of the real protocol. If the oracle FmCoin in the ideal world is replaced by some simulation-secure
protocol in the real world, then the simulator ensures that for any attack on the protocol, an equivalent
attack can be mounted against FmCoin; thus, the protocol can be used in any context FmCoin can be. A
protocol is said to black-box simulation-secure if the simulator does not need to inspect the code of the
protocol’s adversary, but only to run the adversary as a subroutine. It is said to be Universally Composable
(UC) [Can01] if the simulation property is guaranteed to hold in an arbitrary protocol context defined by
an adversarial environment,3 and it is said to have standalone security if simulatability is only guaranteed
to hold for one instance at a time. We refer to any protocol that has both guaranteed output and black-
box standalone-simulatable (or universally composable) security against a malicious adversary corrupting a
dishonest majority of participants as fully secure.

Hofheinz et al. [HMU06] gave a thorough treatment of simulation-secure CTE without guaranteed output
(i.e. permitting the adversary to force the protocol to abort), with a specific focus on the feasibility of CTE
for two parties in a set of six contexts comprising each combination of perfect, statistical, or computational
security, and either black-box standalone security or universally composable security. They proved that
perfectly secure CTE and statistically universally composable CTE are both impossible even for one bit of
stretch. On the other hand, they proved that it is possible to achieve polynomial stretch in the computa-
tional universally composable case via a constant-round construction based on commitments; their protocol
explicitly allows aborts to occur. They also proved that it is possible to achieve polynomial strech in the
statistical standalone case via a protocol with a round count linear in the number of output bits. Although
they make no explicit claim about guaranteed output, this protocol does not in fact contain an abort: to
our knowledge this makes it the first fully-secure CTE protocol, and the first to evade Cleve’s bound.

2Hofheinz et al. [HMU06] proved that Protocol 5.1.1 can in fact be simulated for some parameterizations, but not all.
3Other models exist that achieve a similar goal. UC security is always black-box.
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5.1.1 Our Contributions
Evading Cleve with Fully-Secure CTE. In this work, we initiate the systematic study of fully-secure
coin tossing extension, and pose the question:

How many rounds does fully-secure coin tossing extension require?

It is clear that there must be at least one invocation of an “online” oracle, or else Cleve’s bound would
apply and we would be forced to sacrifice either guaranteed output or unbiased output. It is also clear that
there must be at least one round of communication among the parties, or else there could be no additional
entropy with which to extend the coins that the oracle produces. We begin our study by proving that any
interaction after the coin-tossing oracle FnCoin is invoked is useless. This implies that if the adversary is given
the (standard) power to rush, then the communication of the parties must occur before the invocation of
FnCoin and thus the minimal interaction for any fully-secure CTE protocol is one round, followed by one oracle
invocation. This result is proven in Section 5.4.1.

In the black-box standalone statistical setting, we prove much more interaction than this is required:
specifically, we prove that a protocol with r rounds of interaction before the oracle’s invocation cannot
output more than O(r · log λ) bits, where λ is a security parameter. This implies that the protocol of
Hofheinz et al. is nearly optimal with linear stretch, and with a simple adjustment optimality can easily
be achieved. Since Hofheinz et al. have already proved that statistically universally composable CTE is
impossible, even without guaranteed output or polynomial stretch, this effectively closes the question of the
round complexity of statistical CTE with black-box simulation. This result is proven in Section 5.8.

To evade the bound we have just proved, we turn to computational security and cryptographic assump-
tions. Under the subexponential Learning with Errors (LWE) Assumption [Reg05], we construct an N -party
protocol that achieves polynomial stretch with the optimal interaction pattern: one round, followed by an
invocation of FnCoin. Furthermore, this protocol is universally composable and secure against malicious adver-
saries adaptively corrupting up to N − 1 parties. Due to its basis in a lattice assumption it is also plausibly
post-quantum secure. Indeed, we do not know of a stronger bounded adversary than the one implied by this
combination of attributes. This result is proven in Section 5.5.

By allowing a trusted setup and settling for weaker notions of security, we expand the set of assumptions
we can rely on: using a general hidden subgroup framework, we devise a one-round fully-secure and universally
composable N -party CTE protocol in the Common Reference String (CRS) model. Unlike our previous
construction, this one is proven only to have security against the static corruption of N −1 participants. We
show how to instantiate our framework from the Decisional Diffie-Hellman (DDH) assumption [DH76] and
the Hard Subgroup Membership (HSM) assumption4 on class groups [CL15]: both of these assumptions yield
short, reausable, uniform CRSes that can be sampled via one extra call the very same coin oracle FnCoin that
the protocol extends. We also give an instantiation of the framework using Paillier encryption [Pai99] (and
thus under both the Decisional Composite Residuosity (DCR) and Quadratic Residuosity (QR) assumptions);
this instantiation requires a reusable structured CRS that cannot be so trivially sampled. These results are
proven in Section 5.6.

We find a result in even the weakest of computational assumptions: One-Way Functions (OWFs). A
close inspection of the OWF-based constant-round N -party coin tossing protocol of Goyal et al. [GLOV12]
reveals that it can achieve Identifiable Abort (IA) [IOZ14], though the authors did not claim this. This type
of security does not guarantee an output, but does ensure that if no output is produced, then the honest
parties can agree upon the identity of at least one malicious party. Simple iteration of this protocol to
eliminate cheating parties one-by-one can ensure that an output is produced in O(N) rounds, even if N − 1
parties are corrupt, but cannot prevent the adversary from biasing that output. We describe a simple way
to eliminate this bias using a sample from FnCoin, yielding a constant-round fully-secure coin tossing protocol
for any constant number of parties. This result is proven in Section 5.7.

Fully-Secure Distributed Sampling. Abram et al. [ASY22, AWZ23] recently introduced the notion of
Distributed Sampling, which can be thought of as a generalization of coin tossing to any (efficiently-samplable)

4Also known as the Hidden Subgroup Assumption.
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distribution, and they proved the existence of one-round distributed samplers in the malicious, dishonest-
majority setting under a set of strong assumptions, including Indistinguishability Obfuscation (iO) [BGI+01].
They could not, however, construct one-round unbiased distributed samplers with guaranted output without
running afoul of Cleve [Cle86], and settled instead for a notion they referred to as indistinguishability-
preservingness. In this work, we augment their techniques with a single call to the coin tossing oracle FnCoin
to achieve what they could not. This result is proven in Section 5.9.

Explainable Randomness Extractors. At the beginning of this section, we explained coin tossing
extension as the multiparty analogue of a randomness extractor. This analogy is not an accident: when
the parties in a coin tossing extension protocol perform a final local computation to recover the protocol’s
output from the coin oracle’s output and the transcript of the protocol before the oracle was invoked, they
are precisely invoking a randomness extractor with the pre-oracle transcript as the source and the oracle’s
output as the seed. For one-round protocols as several of ours are, the source is simply the concatenation of
the parties’ single messages. The black-box simulatability of our protocols suggests a heretofore-unidentified
property of certain extractors: it is efficient to find a seed and source that yield a chosen output under the
extractor, such that the distribution of seeds is independent of the output, and the sources belong to some
well-defined distribution that is tolerated by the extractor. We refer to this property as explainability, and
formally prove the correspondance; as corollaries our other results imply explainable computational extractors
for various source distributions under various assumptions. Correspondingly, the statistical CTE protocol
of Hofheinz et al. [HMU06] implies an explainable statistical extractor for a particular source distribution.
This result is proven in Section 5.4.2.

Open Questions.

This work leaves an interesting question open:

Do there exist constant-round and statistically simulation-secure
coin tossing extension protocols with ω(log λ) stretch?

This paper shows that if we relax this question by considering computational security, the answer is yes
(under standard cryptographic assumptions). On the other hand, for the more stringent variant of the
question that requires black-box simulation, the answer is unconditionally no. Thus, an affirmative answer
to our question would separate black-box and non-black-box simulation in the statistical security setting.
We are not aware of such a separation in the literature.

5.2 Technical Overview
Notation. Let λ be the security parameter. For any n ∈ N, we use [n] to denote the set {1, . . . , n}. We use
bxc to denote the integral part of the number x. We use bold font to denote vectors and capital letters for
matrices. We use ‖·‖∞ to denote the `∞-norm (i.e. the maximum magnitude of the entries of the vector).
We use = to denote equality, := to denote equality by definition of the left hand side by the right hand side,
≡ to denote congruence, and ← to denote deterministic assignment. We use $← in an overloaded fashion to
denote sampling from a distribution, assignment using a randomized algorithm, or, if the right hand side
is a domain, uniform sampling from that domain. We use ∼ to denote that two scalars approximate each
other, or in some contexts that they are are negligibly close in the security parameter, and we use ≈s and
≈c to denote that distributions are statistically or computationally indistinguishable, respectively.

A Coin Tossing Extension (CTE) protocol consists of an N -party protocol that produces m unbiased
random bits given a source of n < m unbiased random coins. Formally, our security definition is based on
black-box simulation: we insist that a CTE protocol realizes the functionality FmCoin that provides all parties
with a random string s

$← {0, 1}m in the presence of a malicious PPT adversary corrupting up to N − 1
parties, in the hybrid model of the functionality FnCoin (otherwise known as the seed oracle) that supplies a
random string u

$← {0, 1}n. FnCoin and FmCoin are identical, apart from their parametrization.
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Functionality 5.2.1. FnCoin. The Coin Tossing Functionality
Initialisation: On init from all parties, the functionality activates.

Coins: On receiving (flip, sid) from all parties, the functionality samples s
$← {0, 1}n(λ) and sends

(coins, sid, s) to all parties.

We highlight that FmCoin has guaranteed output, and thus our CTE protocols achieve full security: even if
the corrupted parties deviate from the protocol, the honest parties will always agree on an unbiased random
output. In general, both n and m may be polynomials in the security parameter λ, but we often leave this
implicit. We define the round complexity of the protocol to be the number of rounds of interaction between
the parties before the final invocation of FnCoin, the sampling complexity t to be the number of times FnCoin is
invoked, the additive stretch to be m− t · n, and the multiplicative stretch to be m/(t · n).

Throughout this paper, we consider different flavours of security: most of our constructions achieve
computational security in the UC model, and one is only standalone-secure. One construction achieves
security against adaptive corruptions. Our lower bound applies to the information-theoretic case with black-
box simulation. We always assume that the parties are connected by authenticated, private, point-to-point
channels, and by an authenticated broadcast medium.

5.2.1 The Round Structure of CTE Protocols
In a coin tossing extension protocol, the seed oracle behaves very differently from a typical trusted setup: in
order to evade Cleve’s impossibility [Cle86], the random coins must be delivered throughout the execution
of the protocol and not at the beginning. We begin by proving that any round of interaction after the last
call to the seed oracle is essentially useless. Immediately after the last call, the parties must already agree
on an unbiased random string of the right length. This fact holds even for CTE protocols that rely on
non-black-box simulators.
Theorem 5.2.2 (Informal Version of Theorem 5.4.3). Let Π be a CTE protocol producing m random bits.
Let Π′ be the protocol in which the parties behave exactly as in Π until the last call to the seed oracle, after
which they stop interacting. Π′ is a secure coin tossing extension protocol producing m random bits.

Proving the above theorem begins with the simple observation that the output of any honest party Pi
in Π′ is the value it would return if it were executing Π and all other parties ceased interacting (as they
might, if they are corrupt) after last call to the entropy source. This implies that Pi’s output in Π′ cannot be
noticeably biased by the adversary. It is more challenging to prove that the outputs of the honest parties in
Π′ all coincide. We show this by following the blueprint of Cleve’s impossibility result [Cle86] and applying
a similar argument in the N -party setting. Let α be the index of one (arbitrary) bit of the output, and let
Pi and Pj be two honest parties. Let the random variables bi,r and bj,r be the αth bit that Pi and Pj would
output in Π if all other parties ceased interacting in the rth round after the last call to the seed oracle. By the
security of Π, the bits bi,r and bj,r must be equal for sufficiently large r, because, at the end of the protocol, Pi
and Pj are guaranteed to agree. Our goal is to prove that, whatever the value of α and the behaviour of the
adversary A, the bits bi,0 and bj,0 are equal. For every adversary A, every round r, and b ∈ {0, 1}, we define
two modified adversaries, Abr,0 and Abr,1. The adversary Abr,0 corrupts all parties except Pi. Any parties that
A would corrupt behave when corrupted by Abr,0 as they would when corrupted by A; for all other parties,
Abr,0 follows the protocol. At the rth round after the last call to the seed oracle, Abr,0 simulates the execution
of the round in its head using Pi’s message (Abr,0 is a rushing adversary, and thus has this message before the
round completes). If it predicts that bj,r+1 = b, then Abr,0 sends no further messages; otherwise, it sends the
messages of the execution it simulated in its head and ceases communication thereafter. The adversary Abr,1
is slightly simpler: it corrupts all parties except Pj and determines their behavior just like Abr,0 did. At the
rth round after the last call to the seed oracle, Abr,1 checks whether bi,r = b, and sends no further messages
if so; otherwise, it ceases communication at the end of the following round. Using Cleve’s argument [Cle86],
we can prove that unless bi,0 = bj,0, at least one of the adversaries (Abr,0,Abr,1)r,b must bias the αth bit of the
output of Π by a non-negligible amount, with overwhelming probability.
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This result is formalized in Section 5.4.1.

5.2.2 Coin Tossing Extension and Explainable Extractors
A randomness extractor is a primitive that converts samples from a high-entropy source into true randomness,
with the aid of an auxiliary source of truly random bits, referred to as a seed. The samples provided by the
high-entropy source should be independent of the seed, and the seed is typically required to be much shorter
than the output. Formally, we require that for every source of sufficiently high entropy S, the following
distribution is indistinguishable from the uniform distribution:{

Extract(x,u)
∣∣∣x $← S,u

$← {0, 1}n
}

In Section 5.4.2, we introduce the notion of an explainable extractor : a randomness extractor that satisfies
a stronger, simulation-based security definition relative to some class of entropy sources S. Specifically, for
every source S ∈ S, there must exist a PPT simulator ExplainS such that the following distributions are
indistinguishable:aux,x,u, s

∣∣∣∣∣∣∣
(x, aux)

$← S

u
$← {0, 1}n

s← Extract(x,u)


{
aux,x,u, s

∣∣∣∣∣s
$← {0, 1}m

(aux,x,u)
$← ExplainS(s)

}

We prove that fully-secure CTE protocols imply explainable extractors. In particular, any CTE protocol
can be viewed as an explainable extractor for the class of entropy sources that is generated by running the
CTE protocol with an adversary corrupting at most N − 1 parties, and then outputting the transcript x
and the view of the adversary aux just before the last call to the seed oracle. The extractor Extract(x,u)
simply emits an honest party’s (truly random) output using the transcript, simulating the seed oracle via u,
and performing any final computations via the honest party’s code. The algorithm ExplainS can easily be
derived from the simulator of the CTE protocol.

In Section 5.5, we use this fact to prove the existence of an explainable extractor for the class of entropy
sources that produce N blocks of poly(λ) bits x1, . . . ,xN , such that one block (say xi) is truly random, and
the other blocks and aux are produced by any PPT algorithm receiving xi as input. See Corollary 5.5.7.

5.2.3 Computational Coin Tossing Extension with Long Stretch
We now describe our CTE constructions starting from the simplest to the most sophisticated. All of our
schemes achieve security against adversaries corrupting up to N − 1 parties and require a single call to the
seed oracle.

On UC-Security and Arbitrary Polynomial Stretch at No Round Cost. If a UC-secure coin tossing
extension protocol generates m > n random bits using a single call to the seed oracle, then we immediately
obtain a UC-secure coin tossing extension protocol with the same round complexity, a single call to the seed
oracle, and arbitrary polynomial stretch: all we must do is run the original CTE protocol many times in
parallel. We use the coins produced by the seed oracle in the first execution, and then use n bits of the
resulting output as the seed for the second execution, reserving at least one bit for the final output, and so
on. We obtain at least one additional bit per instance.

From One-Way Functions via Coin Tossing with Identifiable Abort.

We start from the simplest construction: we consider a secondary coin tossing functionality with identifiable
abort and not guaranteed output. We refer to this functionality as FmCoin+IA; it can be realized by the
protocol of Goyal et al. [GLOV12] in the standalone setting assuming one-way functions exist. We might
naïvely hope to build a fully-secure CTE protocol via player elimination. The parties invoke FmCoin+IA, and
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if the invocation succeeds, then they output the random string produced by it; otherwise, they repeat the
invocation of FmCoin+IA without the party that cause the abort. After at most N − 1 attempts, the honest
parties are guaranteed to agree on a random string. Unfortunately, this construction allows the adversary
to bias the output. Remember, we have not relied on the seed oracle, so Cleve’s impossibility [Cle86] must
apply. During each invocation of FmCoin+IA, the adversary learns the candidate output before the honest
parties, and can choose to abort or accept the result; conditioning this choice on the candidate output allows
bias to be injected. For example, if the adversary desires the initial bit of the output to be 0, then it can
abort the invocation of FmCoin+IA only when the candidate output starts with a 1.

We prevent this bias attack by “encrypting” the output of the CTE protocol using a PRG. Specifically,
after FmCoin+IA produces an output, the parties invoke the seed oracle FλCoin to obtain a λ-bit seed, where λ
denotes the security parameter. They expand this seed with a PRG, and output the XOR of the expansion
and the output of FmCoin+IA.

We highlight that even with this modification, the adversary still has the ability to cause an abort and
force the honest parties to invoke FmCoin+IA repeatedly. Compared to the naïve protocol, the adversary must
now face the choice of whether to abort blindly: even given the candidate output of FmCoin+IA, the adversary
cannot predict the output of the CTE protocol. At the time the adversary must make the decision, the
privacy of the final output is guaranteed by the security of the PRG, because the λ-bit seed chosen by the
seed oracle is not yet revealed. This result is expounded in Section 5.7. Ultimately, we prove:
Corollary 5.2.3. If one-way functions exist, then for any constant number of parties there is a constant-round
fully-secure CTE protocol in the plain model, with standalone black-box simulatability against a malicious
PPT adversary statically corrupting all parties but one. This construction is black-box in the OWF.

An Algebraic Framework for Coin-Tossing Extension.

After discovering a fully-secure CTE protocol from coin tossing with identifiable abort, we wondered whether
it is possible to guarantee output without restarting in response to malicious behavior. We answer this
question affirmatively, and moreover demonstrate that only a single round of interaction followed by a single
call to the seed oracle is required in the CRS model. Our construction is an algebraic framework for coin
tossing extension that can be instantiated using DDH groups, class groups, or Paillier Encryption.

One-Round CTE against Rushing Adversaries. One of the main challenges in designing a one-round
CTE protocol is dealing with rushing behaviour. For the moment, imagine that our goal is to construct a
protocol with black-box simulation and no CRS. In the ideal world, the corresponding functionality provides
the simulator with the output of the protocol, and then the simulator must generate fake but consistent
messages for the honest parties. The simulator must do this without knowing the messages of the corrupted
players, since the honest party is assumed to speak first. In principle, the adversary might be able to inject
so much randomness in the protocol that the Shannon entropy of the output s conditioned on the messages
generated by the simulator UH is greater than n+ ω(log λ); specifically

H(s|UH) ≥ n+ ω(log λ). (5.1)

Indeed, what happens if the adversary is the simulator itself, using a random string in place of the func-
tionality’s output? Without a CRS, this is a possibility! If (5.1) holds, the simulator is doomed to fail: the
only power it has is to rewind, or generate a random-looking n-bit response u on behalf of the seed oracle.
The latter will not help because the entropy of u is bounded by n; it is too low to fully correct the bias
induced by the adversary. Rewinding will not help, since it is equivalent to restarting: each execution is
overwhelmingly likely to fail.

Relying on a CRS: the Hidden Subgroup Framework. Now that we have understood what the
main challenges are, we relax our requirements to permit a CRS. We hope that by relying on the common
reference string, we can restrict the influence of the adversary while allowing full freedom to the simulator. We
demonstrate that this is possible using an algebraic framework inspired by the work of Abram et al. [ADOS22],
which we refer to as the the hidden subgroup framework.

254



Theorem 5.2.4 (Informal Version of Theorem 5.6.4). Given any instantiation of the hidden subgroup frame-
work, there exists a one-round N -party fully-secure protocol in the FnCoin-hybrid CRS model that UC-realizes
FmCoin in the presence of a malicious PPT adversary statically corrupting up to N − 1 parties.

Consider a multiplicative group G with a smaller subgroup H. Suppose that we can efficiently sample
uniformly random elements from both groups, but the two distributions are computationally indistinguish-
able. Our CRS consists of a description of G and H along with the CRS for a simulation-extractable NIZK.
Each party Pi broadcasts a random sample hi ∈ H, along with a NIZK proving that the sample belongs to
H. If any NIZK does not verify, the party that generated it is excluded from the execution of the protocol
(without restarting). Next, the seed oracle provides the parties with the description of another random
element h ∈ H. The parties output the product h ·

∏
i hi, ignoring every hj for which the corresponding

NIZK does not verify.
We argue that from the adversary’s perspective, the output is indistinguishable from a random element

in G. Indeed, a simulator that receives g $← G from the functionality can generate a trapdoored CRS for
the NIZK and send g · hι instead of hι on behalf of an arbitrary honest party Pι. The corresponding NIZK
is simulated using the trapdoor, and the simulator sends a correcting term h ←

∏
i h
−1
i on behalf of the

seed oracle (where, again, the product ignores all indices corresponding to non-verifying NIZKs). Notice
that h is a random element in H due to hι. The output of this protocol execution is g, and the transcript is
indistinguishable from a real protocol transcript due to the security of the NIZK and the indistinguishability
of uniform elements in G and H.

The Representation of the Group Elements. There is a problem yet to be solved in the blueprint we
have just given: a CTE protocol must produce more random bits than those provided by the seed oracle.
The entropy of a random element in G is higher than the entropy of random elements in H, but since the two
distributions are indistinguishable, it would seem that the representations of elements in G and H require
strings of the same length. In other words, it seems that in the foregoing construction, the seed oracle
provides as many bits as are produced by the protocol. This is not the case, however: the stretch depends on
how we represent the response of the seed oracle. This representation can be compressed because it is known
to always be in H. If H is a cyclic group of order q and h0 is a generator, then the seed oracle can represent
any h = hr0 as r mod q. This representation is optimal as it requires roughly log q = log|H| < log|G| bits,
and it yields a protocol with positive stretch.

Using such a representation introduces another issue, though: how can the simulator obtain a succinct
representation of

∏
i h
−1
i ? Doing so implies computing a discrete logarithm. This is the purpose of the

simulation-extractable NIZKs: the simulator samples the discrete logarithms of the elements chosen by the
honest parties (including hι), and extracts the discrete logarithms of the elements of the corrupted parties
using their NIZKs.

We require three additional properties from our framework:

• There should exist a succinct representation for the elements of H. For any hi ∈ H, we denote the
representation by ρi. This representation may not be unique.

• Given elements h1, . . . , h` ∈ H and corresponding succinct representations ρ1, . . . , ρ`, we must be able to
obtain a succinct representation of

∏
i∈[`] h

−1
i

• There must be a way to sample h1 and a corresponding succinct representation ρ1 such that, for ev-
ery h2, . . . , h` ∈ H and corresponding ρ2, . . . , ρ`, the succinct representation of

∏
i∈[`] h

−1
i derived from

ρ1, ρ2 . . . , ρ` is indistinguishable from the succinct representation of a uniform element in H.

One Last Property: Converting the Output into Bits. A CTE protocol is supposed to produce
random bits. The protocol we described above outputs a random group element g ∈ G instead. How do we
convert this into a random string? This can be surprisingly challenging! We cannot simply apply an arbitrary
hash function f ; the procedure must be explainable. There must be a way for the simulator to convert the
random string s obtained from the functionality into a random group element g such that f(g) = s. In
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other words, our framework also requires the existence of an efficiently invertible deterministic function f
such that the following distributions are indistinguishable.5{

g, f(g)
∣∣∣g $← G

} {
f−1(s), s

∣∣∣s $← {0, 1}m
}

Instantiations of the Framework. We present three instantiations of the hidden subgroup framework:
one based on DDH over cyclic groups, one based on Paillier Encryption [Pai99], and one based on class
groups of imaginary quadratic fields [CL15].

• Let Ĝ be a cyclic group of prime order p wherein DDH is hard. Inspired by Peikert et al. [PVW08], we
choose G to be the product Ĝ× Ĝ. The subgroup H consists of all pairs (g1, g2) ∈ G such that g2 = gα1
for a randomly sampled, secret α $← Zp. It is easy to see that H is a proper subgroup of G. Furthermore,
it is hard to distinguish between the uniform distributions over G and H under the DDH assumption.
Since H is cyclic with order p, we can also succinctly represent any element in H as the usual discrete
logarithm of (g1, g2) with respect to some generator (g0, g

α
0 ). This succinct representation satisfies the

properties required by the framework. Finally, the matter of conversion from G into random bits depends
greatly on the choice of Ĝ. If the latter is a cyclic subgroup of F∗q for some power of a prime q or of an
elliptic curve, conversion is usually easy as long as the cofactor is small.

• Consider the Paillier group G := Z∗N2 where N is the product of two large, random, safe primes p = 2p′+1
and q = 2q′ + 1. The subgroup H will consist of all 2N th powers of G. H is a subgroup of order p′ · q′,
and since p′ 6= q′ are primes, all abelian groups of this order are cyclic. Under the QR assumption and
the DCR assumption, no PPT adversary can distinguish between a random element in G and a random
2N th power. As before, we can succinctly represent any element in H via the discrete logarithm with
respect to a fixed generator h0 (h0 can be a random 2N th power). This instantiation differs from the
previous one only in that the order of H is unknown: to sample a random element in H with a known
succinct representation, we must sample ρ $← [N ] and set h ← hρ0. We use flooding to ensure the third
property of succinct representations.

• Consider a class group Ĝ and let F denote the cyclic subgroup of prime order q where the discrete
logarithm problem is easy. Let h0 be a random element in Ĝ of order coprime with q. Let ` be 2λ

times greater than an upper-bound on the order of h0. The subgroup H is generated by h0 and G is
F × H. Under the hidden subgroup membership assumption, the uniform distributions over H and G
are indistinguishable. Once again, we can succinctly represent the elements of H through their discrete
logarithm with respect to h0, and as in the Paillier case, the order of H is unknown, so we generate
random elements with a known succinct representation by sampling ρ $← [`] and computing h← hρ0. Also
as in the Paillier case, we use flooding to ensure the third property of succinct representations. While
our class group instantiation has an advantage over our Paillier instantiation in that we can generate the
parameters of the group transparently, there is also an important disadvantage: as far as we know, there
exists no explainable procedure that converts random elements in G into random strings of bits. In other
words, we do not know how to ensure the last property of our framework.

These results are formalized in Section 5.6, with the three instantiations of our framework being presented
in subsections 5.6.1, 5.6.2, and 5.6.3 respectively.

One-Round Setup-Free Adaptively-Secure Coin Tossing Extension.

We return to the question of whether it is possible to built one-round CTE protocols without a CRS. As we
explained in the context of our construction from the hidden subgroup framework, the goal of using a CRS is
to limit adversarial influence on the output, while giving the simulator freedom. With no CRS, the simulator
can only restrict the influence of the adversary through the responses of the seed oracle. This creates a new
challenge: because the responses of the seed oracle are revealed only at the end, we cannot use well-studied

5f−1 may be non-deterministic.
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primitives, such as NIZKs. We have eliminated the most common non-interactive MPC tool for preventing
malicious behavior. We must therefore develop new techniques.

Lattice-Based Lossy Trapdoor Functions. Our solution comes from lattice-based cryptography. In
our protocol, each party Pi will broadcast L vectors xi,1, . . . ,xi,L ∈ ZMq sampled from a discrete Gaussian
distribution. The seed oracle will provide matrices A1, . . . , AN ∈ ZK×Mq and B1, . . . , BN ∈ ZV×Mq . For every
index i ∈ [N ], we define the function

fi : ZMq −→ ZK+V
q such that fi : x 7−→ (Ai · x, Bi · x)

For the moment, assume that the parties output
∑
i∈[N ] fi(xi,`) for every ` ∈ [L], where L is a free parameter

that controls the protocol’s stretch.6 We will adjust this provisional protocol several times as we explore its
properties in order to achieve the properties we desire.

Each fi can be viewed as a lossy trapdoor function [PW08] under the hardness of LWE. In particular,
if M is sufficiently large compared to K,V and log q, then there is a way to sample the matrices (Ai, Bi)
along with a trapdoor T so that, for every v1 ∈ ZKq , v2 ∈ ZVq , the trapdoor T can be used to sample
a low-norm vector x ∈ ZMq such that Ai · x = v1 and Bi · x = v2. Furthermore, this sampling method
yields Ai and Bi that are statistically close to uniform and x is indistinguishable from a discrete Gaussian
sample [Ajt99, GPV08, AP09, MP12]. When the matrices are sampled in this way, fi is in injective mode.

To use fi in lossy mode, suppose that we generate Bi as S ·Ai+Ei, where Ai ∈ ZK×Mq and S ∈ ZV×Kq are
sampled uniformly and Ei ∈ ZV×Mq comes from a discrete Gaussian distribution. Under LWE, the matrix
Bi is indistinguishable from uniform, but every time we apply fi on a small norm vector, we obtain a pair
(v1,v2) ∈ ZKq × ZVq such that v2 is close in norm to S · v1.

Limiting the Influence of the Adversary Using Lossy Trapdoor Functions. Let us consider the
ideal world execution of the protocol we described above. The simulator starts by picking an arbitrary honest
party Pι. It generates the matrices (Ai, Bi)i∈[N ] so that fι is in injective mode (let Tι be the trapdoor),
while all the other functions are in lossy mode. In particular, for every i 6= ι, the simulator ensures that
Bi = S · Ai + Ei, where S $← ZV×Kq , Ai $← ZK×Mq and Ei comes from a discrete Gaussian distribution over
ZV×M .

If all of the parties are honest, then the simulator has full control of the output of the protocol: if
we desire the output to be the vectors u1, . . . ,uL ∈ ZK+V

q , the simulator must simply generate messages
xi,1, . . . ,xi,L following the protocol for every i 6= ι. Then, using the trapdoor Tι, it generates xι,1, . . . ,xι,L
such that fι(xι,`) = u`−

∑
i 6=ι fi(xi,`) for every ` ∈ [L]. That ensures that the output is exactly as desired.

If some parties are corrupted, however, the adversary has the ability to bias the output in an unpredictable
but limited way by using its ability to rush. If the adversary waits until after the honest parties (including
Pι) are committed to their inputs before transmitting those of the corrupted parties, then it can contribute
an additive term of (v1,`,v2,`) :=

∑
j∈C fj(xj,`) to `-th vector produced the protocol, and the simulator

cannot compensate using the mechanism we have just described. Since all fj for j ∈ C are in lossy mode
with respect to the same matrix S, and they are all linear, it follows that v2,` = S · v1,` + e′` where e′`
is a vector of small norm. In other words, the entropy that the adversary can introduce is limited in this
construction because the lossy trapdoor functions corresponding to the parties it corrupts are in lossy mode.
We must add an additional mechanism to the protocol to correct for this adversarially-induced shift.

Adding a Correction Term. In order to allow the simulator to correct the offset induced by a rushing
adversary, we augment the response of the seed oracle with two new matrices C ∈ ZK×Wq and D ∈ ZV×Wq

that are indistinguishable from uniform, and a list of discrete Gaussian samples (e`)`∈[L] over ZWq .7 The
6Note that in this provisional version, the output length is linear in L but the seed length is independent of L; the analysis

of the final protocol’s stretch will be more complex.
7For convenience, we say that the seed oracle outputs discrete Gaussian samples directly, but in order to meet the definition

of a seed oracle it must actually output uniform coins from which such samples can be calculated. We highlight that discrete
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output of our new protocol is the list of all vectors

(s1,`, s2,`) :=
∑
i∈[N ]

fi(xi,`) + (C · e`, D · e`) for every ` ∈ [L].

The simulator samples (C,D) such that they constitute a lossy-mode lossy trapdoor function. In other
words, the matrix D is computed as D ← S · C + F where F is sampled according to a discrete Gaussian
distribution over ZV×Wq . Under the LWE assumption, D is indistinguishable from uniform, from the ad-
versary’s perspective. However, C is not sampled uniformly, as Ai for i 6= ι were. Instead, C is sampled
together with a trapdoor T , much like Aι and Tι. The trapdoor T allows the simulator to sample preimages
with respect to C that are indistinguishable from discrete Gaussian samples.

Suppose that we would like the output to be the random vectors (u1,1,u2,1), . . . , (u1,L,u2,L) ∈ ZKq ×ZVq .
The simulator generates the messages of all honest parties except for Pι by following the protocol, then it
samples w1, . . . ,wL

$← ZKq and, using the trapdoor Tι, it generates the messages xι,1, . . . ,xι,L of Pι such
that

fι(xι,`) = (u1,` + w`,u2,` + S ·w`).

Now, for every ` ∈ [L], let
(v1,`,v2,`) :=

∑
i∈[N ]

fi(xi,`)

where v1,` ∈ ZKq and v2,` ∈ ZVq . Since all of the functions (fi)i 6=ι are in lossy mode with respect to the same
matrix S, we have that for every ` ∈ [L],

v2,` = u2,` + S · (v1,` − u1,`) + e′′`

where e′′` is a small-norm error vector. Therefore, if the simulator uses the trapdoor T to generate the
discrete Gaussian samples (e`)`∈[L] such that C · e` = u1,` − v1,`, then we have

(s1,`, s2,`) = (u1,`,u
′
2,`) such that u′2,` = u2,` + e′′` + F · e`

for every ` ∈ [L]. The term e′′` + F · e` has low norm, and thus u′2,` is close in norm to u2,`. We will
require one further adjustment to our protocol to make them equal. Notice first that if our output vector
u1,` is uniform, then u1,` − v1,` is uniform and consequently the simulated vector e` is indistinguishable
from a discrete Gaussian sample. Furthermore, notice that xι,` leaks nothing about u1,`, because w` acts
as a mask.

Final Adjustments. If two (distributions of) vectors have a low-norm difference, then their high-order
bits are likely the same. Our protocol as currently written admits a simulator that can force the output to
be close in norm to any desired value, so taking only the high-order bits to be the protocol’s output will
allow the very same simulation strategy to produce an exact match. Specifically, we will modify the protocol
to pick a second modulus p� q and round down each entry of s2,` to the closest multiple of q/p.

In this next iteration of the protocol, the parties first compute

(s1,`, s2,`)←
∑
i∈[N ]

fi(xi,`) + (C · e`, D · e`)

such that s2,` ∈ ZVq for every ` ∈ [L], and then compute the vector s′2,` ∈ ZVp that minimizes ‖s2,` − q/p ·
s′2,`‖∞ (we write s′2,` ← ds2,`cp). The output of the protocol is (s1,1, s

′
2,1), . . . , (s1,L, s

′
2,L). If we would like

the output to be the vectors (u1,1,u2,1), . . . , (u1,L,u2,L) ∈ ZKq ×ZVp , then the simulator samples u′′2,` ∈ ZVq

Gaussians are explainable distributions [AWY20]. In other words, given a Gaussian sample e, we are able to efficiently produce
coins that produce the sample e when provided as randomness for the distribution, and the distribution of these coins is uniform,
as required.
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for ` ∈ [L] uniformly subject to du′′2,`+zcp = u2,` for every bounded-norm noise vector z, uses the trapdoor
Tι to generate the messages xι,1, . . . ,xι,L of Pι such that

fι(xι,`) = (u1,` + w`,u
′′
2,` + S ·w`)

and continues the simulation as before.
To guarantee negligible simulation error while using this technique, we must take q to be larger than p

by a superpolynomial factor. Moreover, we must set the magnitude of the LWE noise to α · q for a negligible
function α(λ). In other words, we must assume the hardness of LWE with superpolynomial modulus-to-noise
ratio. This completes the first version of our construction.

Adaptive Security. Our protocol is secure against adaptive corruption as a consequence of the non-
interactive nature of the construction and the explainability of discrete Gaussian distributions [AWY20].
Given a discrete Gaussian sample x, it is possible to efficiently produce random coins that, when provided
as randomness for the distribution, produce the sample x. We rely on this procedure every time that the
adversary decides to corrupt a party after the end of the only round of interaction; recall that the messages
of the parties are simply discrete Gaussian samples.

The Stretch of our First Construction. The number of random bits produced by the first version of
our construction is L · (K · log q + V · log p), whereas the seed oracle provides

(K + V ) · (M ·N +W ) · log q (5.2)

bits for the matrices (A1, . . . , AN , B1, . . . BN , C,D), and L · W · poly(λ) = L · K · log q · poly(λ) bits for
the discrete Gaussian samples (e`)`∈[L]. We observe that (5.2) is independent of L, so, if we pick L to be
sufficiently large, then L · (K · log q+V · log p) becomes arbitrarily greater than (5.2). Similarly, the number
of bits necessary for the discrete Gaussian samples is independent of V , so we can pick V sufficiently large to
make L·(K ·log q+V ·log p) arbitrarily greater than L·W ·poly(λ). This proves that our construction achieves
an arbitrary polynomial stretch. However, notice that equation 5.2 depends linearly on N : this means that
the number of bits supplied by the seed orace grows with the number of parties, which is undesirable. In order
to fix this, we will need to make the slightly stronger assumption that LWE is hard with a subexponential
(rather than superpolynomial) modulus-to-noise ratio. We present only this second construction in full in
Section 5.5, but remark that the first construction that we have just sketched remains interesting, due to
the slightly weaker assumption that it requires.

Improving the Complexity in the Number of Parties. Our first construction requires a number of
random bits from the seed oracle that scales linearly in the number of parties. Is this necessary? We prove
that it is not by devising a mechanism to deal matrices (Ai, Bi)i∈[N ] that satisfy the properties necessary
for the security of the protocol using just O(logN) · poly(λ) uniformly random bits from the seed oracle. We
leverage the fully homomorphic encryption (FHE) scheme Gentry et al. [GSW13], hereafter called GSW.

In the GSW FHE scheme, the public key is a uniform-looking matrix U ∈ Z∆×M
q for some ∆ ∈ N. An

encryption of a bit b under U consists of
U ·R+ b ·G

where R $← ZM×∆·log q
2 is a random binary matrix and G ∈ Z∆×∆ log q

q is the gadget matrix, i.e. a matrix for
which there exists an efficient deterministic algorithm G−1 that produces a binary matrix X ′ ∈ Z∆·log q×M ′

2

such that G · X ′ = Y ′ for any input Y ′ ∈ Z∆×M ′
q and some M ′ ∈ N. Under the hardness of LWE, all

ciphertexts look like random matrices over Z∆×∆·log q
q . Furthermore, due to the homomorphic properties

of this scheme, there exists an efficient algorithm Eval that takes as input the encryptions of bits b1, . . . , bt
under a public key U and the description of a function f : {0, 1}t → {0, 1}, and produces a ciphertext
Zf = U ·Rf + f(b1, . . . , bt) ·G where Rf is a small norm matrix.

We modify the seed oracle so that it provides logN + 1 random matrices

X1, . . . , XlogN ∈ Z(K+V )×(K+V ) log q
q and Y ∈ Z(K+V )×M

q .
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The parties regard X1, . . . , XlogN as GSW ciphertexts with ∆ = K + V ,8 and each party Pj obtains its
matrices (Aj , Bj) by computing

(Aᵀ
j ‖B

ᵀ
j )ᵀ = Zj ← Eval(δj , X1, . . . , XlogN ) ·G−1(Y ).

where δj denotes the Kronecker delta function centered on j. We assume that δj takes as input logN bits
and regards them as the description of an integer in [N ]. Note that Aj comprises the first K rows of Zj and
Bj the last V rows.

In the ideal world, the simulator determines the GSW public key U by sampling the firstK rows uniformly
over ZK×Mq (we denote these rows by U1) and setting the last V rows to be U2 ← S · U1 + E, where E is a
discrete Gaussian sample over ZV×M . Under LWE, U is indistinguishable from a uniformly sampled public
key. Next, the simulator generates X1, . . . , XlogN by encrypting the bits of ι under U ; recall that ι is the
index of the honest party chosen by the simulator. It also samples the matrix Y together with a trapdoor T ′
that allows the simulator to compute preimages with respect to Y that are indistinguishable from discrete
Gaussian samples.

The correctness of FHE evaluation implies that for any j 6= ι,

Bj = U2 ·Rδj ·G−1(Y ) = S · (U1 ·Rδj ·G−1(Y )) + E ·Rδj ·G−1(Y ) ∼ S ·Aj .

In other words, the trapdoor function fj is in lossy mode with respect to S. On the other hand, if we denote
the first K rows of G and Y by G1 and Y1 respectively, and the last V rows by G2 and Y2, we have

Aι − Y1 = U1 ·Rδι ·G−1(Y ) +G1 ·G−1(Y )− Y1 = U1 ·Rδι ·G−1(Y ),

Bι − Y2 = U2 ·Rδι ·G−1(Y ) +G2 ·G−1(Y )− Y2

= S · (U1 ·Rδι ·G−1(Y )) + E ·Rδι ·G−1(Y ) ∼ S · (Aι − Y1).

In other words, fι is the sum of two trapdoor functions, one in injective mode (described by the matrix Y )
and one in lossy mode with respect to S, and the simulator’s trapdoor for fι is now T ′ rather than Tι. The
lossy-mode component of fι clearly introduces some error terms into the output, but we can correct them
together with the bias introduced by the adversary via (e`)`∈[L].

The Stretch of our Second Construction. Like our first construction, this construction produces
L · (K · log q+V · log p) random bits, but the number of bits provided by the seed oracle has been reduced to

logN · (K + V )2 · log q + (K + V ) ·M · log q + (K + V ) ·W · log q (5.3)

for the matrices (X1, . . . , XlogN , Y, C,D), and L ·W ·poly(λ) = L ·K · log q ·poly(λ) for the discrete Gaussian
samples (e`)`∈[L]. As before, (5.3) is independent of L and the number of bits necessary for the discrete
Gaussian samples is independent of V ; we can again pick L and V to be sufficiently large so that L · (K ·
log q+V · log p) becomes arbitrarily greater than (5.3) and L ·(K · log q+V · log p) becomes arbitrarily greater
than L ·W · poly(λ). This proves that our construction achieves an arbitrary polynomial stretch.

Final Remarks. Due to the noise growth induced by homomorphically evaluating the Kronecker delta
function, it no longer suffices to assume the hardness of LWE with a superpolynomial modulus-to-noise ratio.
The Kronecker delta function over the domain [N ] has a multiplicative depth of O(logN) . If we assume that
N ∈ poly(λ) then the depth is O(log λ) and in the simulation, the size of the noise in the GSW ciphertexts
Z1, . . . , ZN increases by a factor O(log λ) relative to our first construction. Since the magnitide of the noise
is now quasipolynomial, we must select a modulus-to-noise ratio that is greater than quasipolynomial in
order to guarantee the correctness of the simulation with overwhelming probability. We will formalize our
second construction in Section 5.5 and show in that section that the hardness of LWE with a subexponential
modulus-to-noise ratio is sufficient.
Theorem 5.2.5 (Informal Version of Theorem 5.5.3). If the subexponential LWE assumption holds, then
there exists a fully-secure N -party protocol in the FnCoin-hybrid model that UC-realizes FmCoin in the presence
of a malicious PPT adversary adaptively corrupting N − 1 parties.

8Note that in the real world, these “ciphertexts” are uniformly random and there is no public key corresponding to them.
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5.2.4 A Lower Bound for Statistical Coin Tossing Extension
We now focus our attention on information-theoretic CTE. Hofheinz et al. [HMU06] proved that perfectly
secure CTE is impossible in any model and that statistically secure CTE is impossible in the UC model,
and constructed one-round statistically secure CTE with O(log λ) additive stretch and black-box standalone
simulation. We ask whether one-round statistically secure CTE with ω(log λ) additive stretch is possible,
and prove that if we insist upon black-box simulation, then it is not.
Theorem 5.2.6. Every r-round CTE protocol with one call to the seed oracle and black-box standalone
statistical simulation security against a rushing semi-malicious9 adversary who corrupts a majority of parties
must have additive stretch in O(r · log λ).

Tools and Notation. Consider any r-round statistically secure CTE protocol with black-box simulation
and a single call to the seed oracle. Due to Theorem 5.2.2, we can assume without loss of generality that the
parties stop interacting after the call to the seed oracle. Let s denote the output of the protocol, let u be the
random coins provided by the seed oracle. For every i ∈ [r], let U iH and U iC denote all the messages sent by the
honest parties and the corrupted parties respectively, up to and including the ith round. We consider a very
specific and rather unusual adversary (at least, in the context of lower bounds): the adversary that simply
follows the protocol as if it was honest, but at the same time uses rushing; i.e., it reveals the messages of the
corrupted players only after seeing the messages of the honest parties. Considering this extremely weak type
of adversary makes our lower bound stronger. Our argument focuses on the information diagram [Yeu91]
of the protocol, and it is reminiscent of a technique used by Abram et al. [AOS23].10 We will make use of
a handful of basic tools and lemmas from information theory, including Shannon entropy (denoted H), and
mutual information (denoted I); these are reviewed in Section 5.3.2.

Output Entropy and Round Count. We start by observing that s is uniquely determined by UrH , UrC ,
and u. Translating this into entropy, we have H(s|UrH , UrC ,u) = 0 in the real world. In the ideal-world
execution, this quantity could be negligibly-far from 0 due to simulation error; we write H(s|UrH , UrC ,u) ∼ 0
to indicate this. We can bound m as follows:

m ∼ H(s) = I(s; (u, UrC , U
r
H)) + H(s|UrH , UrC ,u)

∼ I(s;u|UrC , UrH) + I(s; (UrC , U
r
H))

≤ n+

r∑
i=1

(I(U iH ; s|U i−1
H , U i−1

C ) + I(U iC ; s|U iH , U i−1
C )). (5.4)

In the second and last inequality, we used the chain rule of mutual information; in the last inequality we
also used the fact that I(s;u|UrC , UrH) ≤ H(u) = n.

Rewinding-Induced Correlation in the Ideal World. Consider a straight-line ideal-world experiment
involving a statistically secure CTE protocol. In round i, the adversary (who essentially behaves honestly),
receives the honest parties’ messages U iH , and then produces the message of corrupt parties U iC for round
i according to its view, which contains U i−1

H and U i−1
C . This necessarily implies that U iC is independent of

U iH and s, conditioned on U i−1
H and U i−1

C . However, the simulator might not be straight-line. We allow it
the power to rewind the adversary, which means that it can accept or reject U iC based on its knowledge of
s and U iH . This introduces some correlation between the variables.

Each time the experiment is rewound, the adversary samples a fresh U iC that is independent of U iH , s,
and all of the messages it produced in the previous rewindings, conditioned on U i−1

H and U i−1
C . Because of

this independence and the fact that the number of rewindings is upper bounded by the running time Q of the
9A rushing semi-malicious adversary is required to follow the protocol as in the semi-honest case, however, it is allowed to

maliciously choose the randomness of the corrupted players.
10Our setting is simpler since we consider only statistical security, but on the other hand Abram et al. focused on the

one-round setting, whereas our argument applies to protocols with multiple rounds.
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simulator, the simulator can induce at most logQ bits of correlation between U iC and (U iH , s), conditioned
on U i−1

H and U i−1
C . That is, when Q = poly(λ), I(U iC ; (U iH , s)|U i−1

H , U i−1
C ) ≤ O(log λ). By the chain rule of

mutual information, this implies

I(U iC ; s|U iH , U i−1
C ) ≤ I(U iC ; (U iH , s)|U i−1

H , U i−1
C ) ≤ O(log λ).

Since we are considering an honestly-behaving adversary in the dishonest-majority setting, our entropy
diagram must be symmetric: we can switch the roles of honest and corrupted parties. This leads us to
conclude that I(U iH ; s|U i−1

H , U i−1
C ) ≤ I(U iH ; (U iC , s)|U i−1

H , U i−1
C ) ≤ O(log λ).

Putting It All Together. In the ideal world, we can now use the bounds I(U iC ; s|U iH , U
i−1
C ) ≤ O(log λ)

and I(U iH ; s|U i−1
H , U i−1

C ) ≤ O(log λ) for all i ∈ [r] in equation 5.4, to get the required bound m ≤ n + r ·
O(log(λ)). This result is formalized in Section 5.8.

5.2.5 One-Round Unbiased Sampling from any Distribution
Our results so far have shown that in the dishonest majority setting, it is possible to simulatably sample
m-bit random strings with guaranteed output delivery and no adversarial bias, assuming the existence of a
seed oracle that produces n� m unbiased random coins. Moreover, this can be done with a single round of
interaction followed by one call to the seed oracle. We ask a final question: is there anything special about
the uniform distribution, or can we actually sample values from any distribution with the same security
guarantees, in the same setting? Specifically, given any efficient distribution D, is it possible for N parties
to agree on a random sample from D with the help of a uniform seed oracle, while leaking no additional
information and allowing no bias, and denying the adversary the power to abort, even if it corrupts all of
the parties but one? Can we achieve this using a single round of interaction? We prove that under strong
cryptographic assumptions, this is indeed possible!
Theorem 5.2.7 (Informal Version of Theorem 5.9.5). Let D be an efficient distribution. Assuming the exis-
tence of indistinguishability obfuscation, injective length-doubling PRGs, and indistinguishability-preserving
distributed samplers [AWZ23], there exists a one-round N -party protocol in the FnCoin-hybrid CRS model
that UC-realizes the functionality FD that provides all parties with a sample from D in the presence of a
malicious PPT adversary statically corrupting up to N − 1 parties.

Indistinguishability-Preserving Distributed Samplers. Distributed samplers [ASY22, AOS23,
AWZ23] are one-round protocols that securely sample a common output from some distribution D. Though
several security definitions have been proposed for this primitive, our final protocol relies specifically
upon indistinguishability-preserving distributed samplers [AWZ23], which are known to exist in the CRS
model under a combination of subexponentially secure indistinguishability obfuscation, multi-key FHE,
extremely lossy functions [Zha16], and other, weaker tools. Unlike other flavors of distributed sampler,
indistinguishability-preserving ones do not require idealized models such as the random oracle. Suppose
that Π is an r-round protocol relying on a CRS sampled from D, and that Π realizes some functionality F.
If Π satisfies some particular properties, indistinguishability-preserving distributed samplers permit us to
compile Π into an r + 1-round protocol realizing the same functionality F. This new protocol will rely on a
simpler CRS that is reusable, unstructured (i.e. uniformly distributed), and of length independent of D and
Π. In our setting, we can generate this simpler CRS for the compiled protocol by a making once-and-for-all
call to the seed oracle.

The Protocol WeWill Compile. The protocol Π that we will compile has zero rounds of communication.
The CRS consists of an obfuscated program that hides a puncturable PRF key. When provided with a λ-bit
string s as input, this program evaluates the puncturable PRF on s and uses the result to compute a sample
from D, which is the program’s output. In our zero-round protocol, the parties generate s by calling the
seed oracle, feed s into the obfuscated program that is encoded in the CRS, and output the result.
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It is easy to see that forgoing protocol realizes the functionality FD. The simulator must simply sample
a random ŝ and modify the obfuscated program so that it outputs the sample chosen by the functionality
on input ŝ. Then, when the parties call the seed oracle, the simulator provides ŝ. Since our protocol is
zero rounds before compilation, it will have one round after compilation, with calls to the seed oracle at the
beginning and end.

In Section 5.9, we formalize the above intuition and prove that the zero-round protocol satisfies the
conditions required by indistinguishability-preserving distributed samplers. This is why we construct such
an unusual zero-round protocol, rather than the trivial protocol that simply provides a sample from D as a
CRS for the parties to output: the latter trivial protocol clearly implements FD, but it cannot be compiled
by an indistinguishability-preserving distributed sampler, because if D outputs random strings of bits, then
the result would be a fully-secure coin tossing protocol that contradicts Cleve’s impossibility [Cle86].

5.3 Preliminaries

5.3.1 Universal Composability
We give a high-level overview of the UC model and refer the reader to Canetti [Can01] for more detail.

The real-world UC experiment involves N parties that execute a protocol Π, an adversary A that can
corrupt a subset of the parties (either statically or adaptively), and an environment Z that is initialized
with an advice-string z. All entities are initialized with the security parameter λ and with a random tape.
The environment activates the parties involved in Π, chooses their inputs and receives their outputs, and
communicates with the adversary A. The experiment completes when Z stops activating parties and outputs
a decision bit. Let realΠ,A,Z(λ, z) denote the random variable representing the output of this experiment.

The ideal-world UC experiment involves N dummy parties, an ideal functionality F , a simulator S
(otherwise referred to as the ideal adversary), and an environment Z. The dummy parties forward any
message received from Z to F and vice versa. The simulator can corrupt a subset of the dummy parties and
interact with F on their behalf, and it can communicate directly with F according to its specification. Let
idealF,S,Z(λ, z) denote the random variable representing the output of this experiment.

A protocol Π UC-realizes a functionality F if for every PPT adversary A there exists a PPT simulator S
such that for every PPT environment Z the following distributions are computationally indistinguishable:

{realΠ,A,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ) and {idealF,S,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ)

Full security cannot be expressed in the inherently asynchronous UC framework, because termination
cannot be guaranteed. Katz et al. [KMTZ13] defined a synchronous variant of the UC model that captures
guaranteed termination; this is the variation that we consider in this work, though we leave it implicit. Other
composition frameworks that support synchrony also exist [LZM20, BDD+21].

5.3.2 Information Theory
Useful information theoretic quantities. We recall some basic information-theoretic quantities
(see [CT06] for a primer).

The Shannon entropy of a finite random variable X, denoted by H(X), is defined as
∑
x Pr[X =

x] log
(

1
Pr[X=x]

)
. The binary entropy function for parameter ρ ∈ [0, 1] is defined as h(ρ) = −ρ log(ρ) −

(1 − ρ) log(1 − ρ). For a pair of jointly distributed random variables (X,Y ), the entropy of X conditioned
on Y , denoted by H(X|Y ), is defined as

∑
y Pr[Y = y]H(X|Y = y), where H(X|Y = y) is the entropy of X

conditioned on the event Y = y.
Conditional Shannon entropy preserves under statistical indistinguishability. That is, given pairs of

statistically indistinguishable random variables (X1, Y1) and (X2, Y2), it holds that

H(X1|Y1) = H(X2|Y2) + negl(λ).
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The mutual information between jointly distributed X and Y , denoted by I(X;Y ) is defined as H(X,Y )−
H(X|Y ) − H(Y |X), and is always non-negative. Mutual information of X and Y conditioned on a jointly
distributed Z, denoted by I(X;Y |Z), is defined as H(X|Z)−H(X|Y,Z). The three variate mutual information
of (X,Y, Z), denoted by I(X;Y ;Z), is defined as I(X;Y )− I(X;Y |Z), and can be negative.

By the chain rule of mutual information, I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ). We will use this equality in
our proofs.
Definition 5.3.1 (Explainable Distribution). Let D(1λ) and D′(λ) be distributions We say that D is D′-
explainable if there exists a pair of PPT algorithms (Convert,Explain) satisfying the following properties:

• Convert is deterministic and Convert(1λ, y) for y $← D′(1λ) is statistically indistinguishable from D(1λ).

• No PPT adversary can distinguish between{
x, y

∣∣∣∣∣y
$← D′(1λ)

x← Convert(1λ, y)

} {
x, y

∣∣∣∣∣x
$← D(1λ)

y
$← Explain(1λ, x)

}

We say that D is explainable (without specifying the distribution D′) if it is µR-explainable for some poly-
nomial function R(λ) (µR denotes the uniform distribution over {0, 1}R(λ)). We call R the randomness
complexity of the distribution. We say that D is (L,R)-convertible if D is µR-explainable and µL is D-
explainable.

5.3.3 Lattices
Given a lattice Λ and a positive integer s, we use DΛ,s to denote the discrete Gaussian distribution over Λ
with parameter s. Given positive integers p, q where q > p and a vector v ∈ Znq for some n ∈ N, we use dvcp
to denote the n-dimensional Zp vector u, where, for every i ∈ [n], the i-th entry consists of the value ui that
minimises the quantity |vi − ui · bq/pc|. For any positive integers q, K ≤M , matrix A ∈ ZM×Kq and vector
u ∈ ZKq , we define the following lattices

Λ(A) := {A · v + q ·w | v ∈ ZK ,w ∈ ZM}
Λ⊥u (A) := {v ∈ ZM | Aᵀ · v ≡ u mod q}

We use Λ⊥(A) to denote Λ⊥0 (A).
Lemma 5.3.2. For every K, s ∈ N, the distributions DZK ,s and DKZ,s are the same (we use DKZ,s to denote a
K-dimensional vector of random variables where all the entries are independently distributed according to
DZ,s).
Definition 5.3.3 (The Learning with Errors (LWE) Assumption [Reg05, Reg09]). Let q(λ) be a positive
integer and let α : N→ [0, 1] be a function of the security parameter. Define s(λ) := α(λ) · q(λ). Let K,M
be polynomial functions of the security parameter. We say that the (q, α,K,M)-LWE assumption holds if
the following distributions are computationally indistinguishableA,v

∣∣∣∣∣∣∣∣∣∣

A
$← ZM×Kq

s
$← ZKq

e
$← DMZ,s

v ← (A · s+ e) mod q


{
A,v

∣∣∣∣∣A
$← ZM×Kq

v
$← ZMq

}

We say that the assumption holds with subexponential modulo-to-noise ratio if α is 2−Ω(λε) for some
constant ε > 0.
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Lemma 5.3.4 (Leftover Hash Lemma). Let K,M, q be positive integer and let ξ be a distribution over ZM
such that H∞(ξ) ≥ K · log q + λ. Then the following distribution is 2−λ-far from the uniform distribution.A,v

∣∣∣∣∣∣∣
A

$← ZK×Mq

e
$← ξ

v ← A · e


Theorem 5.3.5 ([Ajt99, GPV08, AP09, MP12]). There exists an pair of PPT algorithms (TrapGen,PreSample)
with the following syntax

• TrapGen takes as input values 1K , 1M , q and outputs a pair (A, T ) where A ∈ ZK×Mq and T is a trapdoor.

• PreSample takes as input a trapdoor T , a vector u ∈ ZKq and a positive integer s. The output is a vector
e ∈ ZMq .

and satisfying the following properties:

• There exists a constant β > 1 such that, M ≥ βK · log q, the distribution of the matrix A output by
(A, T )

$← TrapGen(1K , 1M , q) is negl(K)-far from uniform.

• If M ≥ βK · log q and s =
√
K · log q · ω(

√
logK), for every u ∈ ZKq , the distributions PreSample(T,u, s)

and DΛ⊥u (A),s, for (A, T )
$← TrapGen(1K , 1M , q), are negl(K)-far.

Lemma 5.3.6 ([Ban93, PR06]). Suppose that s = ω(
√

logK). Then,

Pr
[
‖e‖ ≥ s ·

√
K
∣∣∣e $← DZK ,s

]
≤ negl(K).

Moreover, H∞(DZK ,s) ≥ K.
Theorem 5.3.7 ([GPV08, AWY20]). Suppose that s = ω(

√
logK). Then, the distribution DZK ,s is explain-

able. Furthermore, the randomness complexity is O(K · λ2 +K · λ · log s).

5.3.4 Preliminaries on Indistinguishability-Preserving Distributed Samplers
In this subsection, we recall the quite complex definition of indistinguishability-preserving distributed sampler
[AWZ23]. For the whole subsection, let D denote an efficient distribution.

We start by recalling the definition of trapdoored distribution for D. This is essentially a distribution D′
taking as input auxiliary information aux and outputting samples R along with trapdoors T . For any choice
of the auxiliary information, the trapdoored sample R looks like a sample from D.
Definition 5.3.8 (Trapdoored Distribution [AWZ23]). A trapdoored distribution is a PPT algorithm D′
that takes as input the security parameter 1λ and auxiliary information aux ∈ {0, 1}`(λ), where `(λ) is a
polynomial, and outputs a sample R and a trapdoor T .

Let D(1λ) be an efficient distribution. We say that D′ is a trapdoored distribution for D if, for every
aux ∈ {0, 1}`(λ), the following distributions are computationally indistinguishable{

R
∣∣∣R $← D(1λ)

} {
R
∣∣∣(R, T )

$← D′(1λ, aux)
}

Next, we recall the definition of trapdoorable distributed sampler. A distributed sampler [ASY22] consists
of a one-round protocol for the secure generation of samples from a distribution D: all parties broadcast a
distributed sampler message. Given the N messages, everybody can derive the output. The construction
sometimes relies on a CRS. A trapdoorable distributed sampler is a distributed sampler that, by knowing
a trapdoor hidden in the CRS, allows switching the distribution of the outputs from D to the trapdoored
distribution D′(1λ, aux) for any chosen aux. The trapdoor in the CRS allows also to retrieve the trapdoors
relative to the outputs of the sampler (we recall that the latter are coming from D′).
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Definition 5.3.9 (Trapdoorable distributed sampler [AWZ23]). An N -party trapdoorable distributed sampler
consists of a tuple of PPT algorithms (Setup,Gen,Sample,SimSetup,SimGen,Trap) with the following syntax:

• Setup takes as input the security parameter and outputs a CRS σ.

• Gen takes as input the security parameter, a session identity sid, the index of a party i ∈ [N ] and a CRS
σ. The output is a distributed sampler message Ui.

• Sample is deterministic and takes as input N distributed sampler messages U1, . . . , UN a session identity
sid and a CRS σ. The output is a sample R.

• SimSetup takes as input the security parameter and outputs a CRS σ along with the setup trapdoor
information ζ.

• SimGen takes as input the security parameter, a session identity sid, an index i ∈ [N ], setup trapdoor
information ζ and auxiliary information aux. The output is a distributed sampler message Ui along with
message trapdoor information ξ.

• Trap is deterministic and takes as input message trapdoor information ξ and distributed sampler messages
U1, . . . , UN . The output is a pair (R, T ).

We now recall all the notions necessary to define the security of indistinguishability preserving distributed
samplers. Games with oracle distributions are described by an efficient challenger interacting with an adver-
sary. The challenger impersonates a set of honest parties, while the adversary impersonates the corrupted
players. Throughout the game, both the challenger and the adversary can send special messages (Sample, i)
on behalf of any party they control Pi. When the challenger sent this special message on behalf of all honest
player, we generate a sample from the oracle distribution and we provide it to the adversary. When also
the adversary sent the special message on behalf of all corrupted players, we provide the sample also to the
challenger.

The special message (Sample, i) is meant to represent the delivery of the universal sampler message of
party Pi. The oracle distribution is instead meant to represent the computation of the distributed sampler
output.
Definition 5.3.10 (Game with Oracle Distribution [AWZ23]). An N -party game with oracle distribution is a
pair G = (Ch,D), where D is an efficient distribution and Ch is an efficient challenger: a PPT, round-based,
interactive Turing machine that, for every i ∈ [N ], sends the message (Sample, i) at most once during its
execution.

Games with trapdoored oracle distribution are games with oracle distribution where the latter is trap-
doored. When we generate the sample, we first ask the challenger to provide the auxiliary information aux.
The trapdoor hidden in the sample is provided only to the challenger.
Definition 5.3.11 (Game with Trapdoored Oracle Distribution [AWZ23]). An N -party game with oracle
distribution is a pair G = (Ch,D′), where D′ is a trapdoored distribution and Ch is an efficient challenger: a
PPT, round-based, interactive Turing machine that, for every i ∈ [N ], sends the message (Sample, i) at most
once during its execution.

Below we recall the notion of trapdoor security for games with trapdoor oracle distribution. The latter
states that, even if unexpectedly, we do not provide the trapdoor to the challenger, the adversary does not
notice it.
Definition 5.3.12 (Trapdoor Security [AWZ23]). We say that a game with a trapdoored oracle distribution
G = (Ch,D′) satisfies trapdoor security if no PPT adversary can win Game 5.3.13 with non-negligible
advantage in λ.
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Game 5.3.13. Trapdoor Security Game

1. b $← {0, 1}

2. Activate the adversary A with 1λ

3. Receive φ and H ⊆ [N ] from A

4. Activate Ch on input 1λ, φ and H

5. Let Ch and A interact

6. When Ch has sent the message (Sample, i) for every i ∈ H, receive aux from Ch, sample (R, T )
$←

D′(1λ, aux) and provide R to A

7. After the above, when A has sent the message (Sample, i) for every i 6∈ H, provide R to Ch. If b = 1,
provide T too.

8. Keep letting A and Ch interact

9. The adversary wins if it halts outputting b

We recall the definition of chosen-sample indistinguishability. Essentially, a game with oracle distribution
G0 is chosen-sample indistinguishable from a game with trapdoored oracle distribution G1 if no adversary
can tell the two games apart even if it chooses the responses of the oracle distribution (no trapdoors are
given to the challenger of G1).
Definition 5.3.14 (Chosen-Sample Indistinguishability [AWZ23]). Let D′ be a trapdoored distribution fro D.
Let G0 = (Ch0,D) and G1 = (Ch1,D′) be a game with oracle distribution and a game with trapdoored oracle
distribution respectively. We say that G0 and G1 are chosen-sample indistinguishable if no PPT adversary
can win the Game 5.3.15 with non-negligible advantage in λ.

Game 5.3.15. Chosen-Sample Indistinguishability

1. b $← {0, 1}

2. Activate the adversary A with 1λ

3. Receive φ and H ⊆ [N ] from A

4. Activate Chb on input 1λ, φ and H

5. Let Chb and A interact

6. When Chb has sent the message (Sample, i) for every i ∈ H and A has sent the message (Sample, i)
for every i 6∈ H, receive R from A and forward it to Chb.

7. Keep letting A and Chb interact

8. The adversary wins if it halts outputting b

We can finally recall the definition of indistinguishability-preserving distributed samplers
Definition 5.3.16 (Indistinguishability-Preserving Distributed Sampler [AWZ23]). LetD′ be a trapdoored dis-
tribution for D. We say that an N -party trapdoorable distributed sampler is indistinguishability-preserving
for (D,D′) if, for every N -party game with oracle distribution G0 = (Ch0,D) and N -party game with trap-
doored oracle distribution G1 = (Ch1,D′) such that

• G0 and G1 are chosen-sample indistinguishable and
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• G1 satisfies trapdoor security

no PPT adversary can win the Game 5.3.17 with non-negligible advantage in λ.

Game 5.3.17. Indistinguishability-Preserving Distributed Sampler
Initialisation: This procedure is run only once at the beginning of the game.

1. b $← {0, 1}

2. σ0
$← Setup(1λ)

3. (σ1, ζ)
$← SimSetup(1λ)

4. Activate the adversary A with 1λ and σb

5. Receive a list of party identities id1, . . . , idM and H ⊆ [M ] from A

Session: This procedure can be queried as many times as the adversary wants and at any point in time
(multiple sessions can be run simultaneously).

1. Receive sid := (tag, idi1 , . . . , idiN ) from the adversary where tag ∈ {0, 1}∗. Proceed with the following
steps only if sid hasn’t been queried before and if there exists no h 6= j such that ij = ih.

2. Receive ψ from the adversary.

3. Activate a copy of Chb on input 1λ, φ and H ∩ {i1, . . . , iN}

4. Let Chb and A interact

5. When Chb sends (Sample, j) where ij ∈ H and there exists another ih ∈ H such that (Sample, h)

hasn’t yet been sent, compute Uj $← Gen(1λ, sid, j, σb) and send Uj to the adversary.

6. When Chb sends (Sample, j) where ij ∈ H and there exists no another ih ∈ H such that (Sample, h)
hasn’t yet been sent, perform the following

• If b = 0, compute Uj $← Gen(1λ, sid, j, σ0) and send Uj to the adversary.
• If b = 1, receive aux from the challenger Ch1 and compute (Uj , ξ)

$← SimGen(1λ, sid, j, ζ, aux) and
send Uj to the adversary.

7. When the adversary sends a distributed sampler message Uj on behalf of a corupted party Pij , send
(Sample, j) to Chb.

8. When Chb has sent the special message on behalf of all honest parties in the execution and has
received the special message on behalf of all corrupted players, perform the following:

• If b = 0, provide Ch0 with R← Sample(U1, . . . , UN , sid, σ0)

• If b = 1, provide Ch1 with (R, T )← Trap(ξ, U1, . . . , UN )

9. Keep letting A and Chb interact

10. The adversary wins if it halts outputting b

5.3.5 Additional Cryptographic Primitives
We recall the definition of indistinguishability obfuscation and puncturable PRFs.
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Definition 5.3.18 (Indistinguishability Obfuscation [BGI+01, GGH+13, JLS21]). An indistinguishability ob-
fuscator (iO) consists of a PPT algorithm iO satisfying the following properties:

• (Correctness). For every circuit C

Pr
[
∃x : C ′(x) 6= C(x)

∣∣∣C ′ $← iO(1λ, C)
]

= 0.

• (Security). For every sampler A outputting circuits C0, C1 of the same size such that C0(x) = C1(x)
for every input x, along with auxiliary information aux, the following distributions are computationally
indistinguishable{

C ′, aux

∣∣∣∣∣(C0, C1, aux)
$← A(1λ)

C ′
$← iO(1λ, C0)

} {
C ′, aux

∣∣∣∣∣(C0, C1, aux)
$← A(1λ)

C ′
$← iO(1λ, C1)

}

Definition 5.3.19 (Puncturable PRF [KPTZ13, BW13, BGI14]). A puncturable PRF with domain {0, 1}L(λ)

and range {0, 1}M(λ) consists of a pair of deterministic, polynomial time algorithms (F,Punct) satisfying the
following properties:

• (Correctness). For every K ∈ {0, 1}λ and distinct inputs x,y ∈ {0, 1}L(λ), we have

Pr
[
F (K,y) = F (K̂,y)

∣∣∣K ′ ← Punct(K,x)
]

= 1.

• (Security). For every input x ∈ {0, 1}L(λ), the following distributions are computationally indistinguish-
able K̂, r

∣∣∣∣∣∣∣
K

$← {0, 1}λ

K̂ ← Punct(K,x)

r ← F (K,x)


K̂, r

∣∣∣∣∣∣∣∣
K

$← {0, 1}λ

K̂ ← Punct(K,x)

r
$← {0, 1}M(λ)


5.4 Coin Tossing Extension and Explainable Extractors
5.4.1 Properties of Coin Tossing Extension Protocols
In this section, we introduce and prove a few basic properties of CTE protocols, we give a formal definition
for explainable extractors, and a proof that explainable extractors are implied by simulation-secure CTE
protocols.
Definition 5.4.1 (Closure under Early Stopping). Let A be a class of adversaries. For any A ∈ A, PPT
algorithm M and r ∈ N, we define the adversary AM,r as the adversary that

• if A uses only static corruption, AM,r statically corrupts all parties except one chosen at random among
those not corrupted by A (let this party be Pj). Then, it runs the parties corrupted by A as A does and
the remaining parties by following the protocol. At the end of the r-th round, AM,r receives the message
from the honest party for round r + 1, provides it to A and runs M on the view of A obtaining a bit b,
messages (msgi)i 6=j and a value z. If b = 0, AM,r immediately stops delivering messages to Pj and outputs
z. Otherwise, it sends (msgi)i6=j to Pj on behalf of the corrupted parties and then halts outputting z.

• if A uses adaptive corruption, AM,r behaves as A in the first r rounds of the protocol, then corrupts all
the remaining honest parties except one chosen at random (let this be Pj). The adversary AM,r waits
for the messages of Pj in the (r + 1)-th round, provides it to A and runs M on the view of A obtaining
a bit b, messages (msgi)i 6=j and a value z. If b = 0, AM,r immediately stops delivering messages to Pj
and outputs z. Otherwise, it sends (msgi)i6=j to Pj on behalf of the corrupted parties and then halts
outputting z.
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We say that A is closed under early stopping if, for every A ∈ A, PPT algorithm M and r ∈ N, AiM, r
belongs to A too.

We use Ar to denote the adversary AM,r whereM is the algorithm that always outputs b = 0, (msgi)i 6=j =
⊥ and z consisting of the view of A.
Definition 5.4.2 (Closure under Corruption-Preserving Extension). We say that A is closed under corruption-
preserving extension if for every adversary A ∈ A and round r ∈ N, there exists an adversary A′ ∈ A that
behaves as A for the first r rounds and, after that, never corrupts any new party.
Theorem 5.4.3. Let A be a class of adversaries that is closed under early stopping and corruption-preserving
extension. Suppose that Π is an A-secure N -party coin-tossing extension protocol. Consider the following
modification of Π: the parties run Π until (including) the round in which the final call to FnCoin is made.
Then, each party terminates the protocol after computing the output according to the instructions in Π for
the event in which all the remaining parties remains silent in the next round. The modified protocol is an
A-secure N -party coin-tossing extension protocol with the same stretch.

Proof. Without loss of generality, we assume that, in each round, the parties speak all simultaneously
(sending the empty string corresponds to not speaking on that given channel). Consider an adversary
A ∈ A. And let κ be the round where the parties call FnCoin for the last time. The simulator SimA is
pretty simple: we pick an honest party Pi and we start running the simulator for the original protocol Π
against the adversary Aκ but giving instruction to the functionality to corrupt only the parties chosen by A.
Immediately after the last call to FnCoin, we stop the simulation. Clearly, if at that point, there is only one
party not corrupted by A, the value output by the functionality on behalf of the only party not corrupted
by Aκ will be consistent with the execution of the protocol. Now, we need to show that if there are multiple
parties not corrupted by A, their outputs are all equal with overwhelming probability.

We follow the blueprint of the impossibility of [Cle86]. Suppose that after the last call of FnCoin, there
exist ` rounds of interaction. Pick any α ∈ [m]. For any two distinct parties i, j ∈ [n] and r ∈ [`], we define
the random variable bj,r as the α-th bit that Pj outputs if the other parties stop speaking in the r-th round
following the last call to FnCoin. Similarly, we define the random variable bi,r as the α-th bit that Pi outputs
if the other parties stop speaking in the r-th round following the last call to FnCoin.

For every b ∈ {0, 1}, r ∈ [`], we consider the adversary Abr,0 that behaves as follows:

• If A uses only static corruption, Abr,0 picks two random parties Pi and Pj among those not corrupted
by A (if A corrupts N − 1 parties, Abr,0 sets a flag e ← ⊥ and behaves as Aκ+r), statically corrupts all
the parties except Pi, models the behaviour of A for all the parties corrupted by A and makes all other
parties follow the protocol (including Pj). At the r-th round after the last call to FnCoin, Abr,0 simulates
the r-th round in its head using Pi’s message in the real protocol execution and simulating the execution
of all other parties not corrupted by A by following the protocol. It then checks whether bj,r+1 = b. If
that is the case it quits the execution in the r-th round without sending any message, otherwise, it quits
at the following round following the execution in its head for the r-th round.

• If A uses adaptive corruption, let A′ be the corruption-preserving extension of A with respect to round
κ. The adversary Abr,0 behaves as A′ for the first r − 1 rounds after the last call to FnCoin. Then, it picks
a random honest party Pi and corrupts all other players. It waits for the message of Pi in the r-th round
and uses it to simulate the rest of the round in its head according to A′. Then, Abr,0 picks a random party
Pj different from Pi among those not corrupted by A (if this party doesn’t exist Abr,0 sets a flag e ← ⊥
and behaves as Aκ+r) and checks whether bj,r+1 = b. If that is the case it quits the execution in the r-th
round without sending any message, otherwise, it quits at the following round following the execution in
its head for the r-th round.

We also consider the adversary Abr,1 that behaves as follows:

• If A uses only static corruption, Abr,1 picks two random parties Pi and Pj among those not corrupted
by A (if A corrupts N − 1 parties, Abr,1 sets a flag e ← ⊥ and behaves as Aκ+r), statically corrupts all
the parties except Pj , models the behaviour of A for all the parties corrupted by A and makes all other
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parties follow the protocol (including Pi). It then checks whether bi,r = b. If that is the case it quits the
execution in the r-th round after the last call to FnCoin without sending any message, otherwise, it quits
at the following round.

• If A uses adaptive corruption, let A′ be the corruption-preserving extension of A with respect to round κ.
The adversary Abr,1 behaves as A′ for the first r − 1 rounds after the last call to FnCoin. Then, it corrupts
a random party Pi among those not corrupted by A (if Pi is the only remaining honest party, Abr,1 sets a
flag e← ⊥ and behaves as Aκ+r). If bi,r = b, Abr,1 corrupts all other parties but one (let this be Pj) and
halts. Otherwise, it runs for one additional round following the instructions of A and making Pi behave
honestly. After this, it corrupts all parties but one (let this be Pj) and halts.

Let E be the event in which, at the end of round κ, the adversary A has not corrupted N − 1 parties
yet. The bias towards b of the α-th bit output by Pi when the adversary is Abr,0 is

Adv(Abr,0) := Pr[bi,r = b, bj,r+1 = b, E] + Pr[bi,r+1 = b, bj,r+1 = 1− b, E]

+ Pr[bi,r = b,¬E]− 1/2

Similarly, the bias towards b of the α-th bit output by Pj when the adversary is Abr,1 is

Adv(Abr,1) := Pr[bj,r = b, bi,r = b, E] + Pr[bj,r+1 = b, bi,r = 1− b, E]

− Pr[bj,r = b,¬E]− 1/2

Now, if we consider the following sum, we obtain∑
r∈[`]

(
Adv(A0

r,0) + Adv(A1
r,0) + Adv(A0

r,1) + Adv(A1
r,1)
)

=
∑
r∈[`]



Pr[bi,r = 0, bj,r+1 = 0, E] + Pr[bi,r+1 = 0, bj,r+1 = 1, E]

+ Pr[bi,r = 0,¬E] + Pr[bi,r = 1, bj,r+1 = 1, E]

+ Pr[bi,r+1 = 1, bj,r+1 = 0, E] + Pr[bi,r = 1,¬E]

+ Pr[bj,r = 0, bi,r = 0, E] + Pr[bj,r+1 = 0, bi,r = 1, E]

+ Pr[bj,r = 0,¬E] + Pr[bj,r = 1, bi,r = 1, E]

+ Pr[bj,r+1 = 1, bi,r = 0, E] + Pr[bj,r = 1,¬E]− 2


We observe that, for every r ∈ [`], we have Pr[bi,r = 0,¬E] + Pr[bi,r = 1,¬E] = Pr[¬E] and Pr[bj,r =

0,¬E] + Pr[bj,r = 1,¬E] = Pr[¬E]. Furthermore,

Pr[E] = Pr[bi,r = 0, bj,r+1 = 0, E] + Pr[bi,r = 1, bj,r+1 = 0, E]

+ Pr[bj,r+1 = 0, bi,r = 1, E] + Pr[bj,r+1 = 1, bi,r = 1, E]

and

Pr[E] = Pr[bi,r = 0, bj,r = 0, E] + Pr[bi,r = 1, bj,r = 0, E]

+ Pr[bj,r = 0, bi,r = 1, E] + Pr[bj,r = 1, bi,r = 1, E].

Therefore, we obtain that∑
r∈[`]

(
Adv(A0

r,0) + Adv(A1
r,0) + Adv(A0

r,1) + Adv(A1
r,1)
)

= Pr[bi,0 = 0, bj,0 = 0, E] + Pr[bi,0 = 1, bj,0 = 1, E]

+ Pr[bi,`+1 = 0, bj,`+1 = 1, E] + Pr[bi,`+1 = 1, bj,`+1 = 0, E] + Pr[¬E]− 1

= Pr[bi,0 = bj,0, E] + Pr[bi,`+1 6= bj,`+1, E]− Pr[E].
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Due to the security of the protocol against A′, we know that Pr[bi,`+1 6= bj,`+1, E] ≤ negl(λ). By the
security of the protocol against Abr,0 and Abr,1, we also have |Adv(Abr,0)|, |Adv(Abr,1)| ≤ negl(λ). Since r is at
most polynomial in λ and all the addends are negligible functions, we have∣∣∣∣∣∣

∑
r∈[`]

(
Adv(A0

r,0) + Adv(A1
r,0) + Adv(A0

r,1) + Adv(A1
r,1)
)∣∣∣∣∣∣ ≤ negl(λ).

We conclude that Pr[bi,0 = bj,0, E] = Pr[E]− negl(λ). Notice that this holds for any α ∈ [m]. So at the time
of the last call to FnCoin, all the honest parties already agree on an m-bit string. During the simulation of
the protocol such string must necessarily be consistent with the output of the functionality. This ends the
proof.

5.4.2 Explainable Extractors

Definition 5.4.4 (Entropy Source Class). An entropy source class S is a set of not-necessarily-efficient ran-
domised algorithms that on input 1λ, output values x ∈ {0, 1}L(λ) where L(λ) is polynomial and auxiliary
information aux.

Definition 5.4.5 (Explainable Extractor). An explainable extractor for the entropy source class S is a deter-
ministic polynomial-time algorithm Extract taking as input the security parameter 1λ, a strings x ∈ {0, 1}L(λ)

and u ∈ {0, 1}n(λ) and outputting a string s ∈ {0, 1}m(λ). We require that, for every S ∈ S, there exists a
PPT algorithm ExplainS such that the following distributions are indistinguishableaux,x,u, s

∣∣∣∣∣∣∣∣
(x, aux)

$← S(1λ)

u
$← {0, 1}n(λ)

s← Extract(1λ,x,u)

{
aux,x,u, s

∣∣∣∣∣s
$← {0, 1}m(λ)

(aux,x,u)
$← ExplainS(1λ, s)

}

We say that the explainable extractor is computational if indistinguishability holds only against PPT dis-
tinguishers. Otherwise, we say that the explainable extractor is statistically (or information-theoretically)
secure.

Observe that, in every explainable extractor, for every S ∈ S, the distribution of Extract(1λ,x,u), where
x

$← S(1λ) and u
$← {0, 1}n(λ), is indistinguishable from the uniform distribution over {0, 1}m(λ).

Theorem 5.4.6. If Π is an A-secure N -party coin tossing extension protocol ending with a call to FnCoin.
Suppose that Π has public output (i.e., it is possible to compute the output given only the transcript of
the protocol and the responses of FnCoin. Then, there exists an explainable extractor for the entropy source
class S consisting of all (SA)A∈A, where SA simulates an execution of Π together with A and outputs the
transcript of the protocol except for the answer to the last call to FnCoin and (as auxiliary information) the
view of A.

Proof. We consider the explainable extractor that, given the transcript x for the protocol Π generated by
SA, and u ∈ {0, 1}n(λ), returns the output of Π as if u was the response to the last call to FnCoin.

By the security of the coin tossing extension protocol, we know that for every adversary A, there exists a
simulator SimA for which it is hard to distinguish between the interaction of A with Π, and the interaction
of SimA with FmCoin. We can therefore build ExplainSA by simply running SimA on the provided sample
s ∈ {0, 1}m(λ).
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5.5 One-Round, One-Sample Adaptive Coin Tossing Extension
from LWE

In this section, we present our construction for one-round one-query CRS-free CTE with universally com-
posable security against adaptive adversaries, from subexponential LWE. We previously overviewed this
construction in Section 5.2.3, and invite the reader to review the basic definitions and common tools we use
in Section 5.3.1 and Section 5.3.3. We begin with our protocol, then prove it secure and show by corollary
the class of explainable extractors that it implies.
Protocol 5.5.1. One-Round, One-Query CTE from LWE

Let K,M, V,W,L, s0, s1 : N → N be polynomial functions in the security parameter. Assume that
K = Ω(λ). Define p := 2 and q := 2t where t = Θ(λ).a Let χ0 be DZ,s0 , let χ1 be DZ,s1 . Suppose
that W ≥ β ·K · log q and M ≥ β · (K + V ) · log q, where β is the constant defined in Theorem 5.3.5.
Assume also that s0 =

√
(K + V ) log q · ω(

√
log(K + V )) and s1 =

√
K log q · ω(

√
logK). Let G be a

(K+V )× (K+V ) · t gadget matrix, and let G−1 be the deterministic algorithm that, on input a matrix
Y ′ ∈ Z(K+V )×M ′

q for some M ′ ∈ N, outputs a matrix X ′ such that G · X ′ = Y ′ and ‖Q‖∞ = 1 (see
Gentry et al. [GSW13]). For every j ∈ [N ], let δj denote the Kronecker delta function centered on j.

Protocol. Each party Pi performs the following operations.

1. ∀` ∈ [L] : xi,`
$← χM0

2. Broadcast (xi,1, . . . ,xi,L)

3. For any j ∈ [N ] and ` ∈ [L] such that ‖xj,`‖∞ >
√
K · s0, set xj,` ← 0.

4. Call FnCoin and interpret the response as values (Xi)i∈[dlogNe], Y, C,D and (e`)`∈[L] where

• ∀i ∈ [dlogNe] : Xi ∈ Z(K+V )×M
q

• Y ∈ Z(K+V )×M
q

• C ∈ ZK×Wq

• D ∈ ZV×Wq

• e` is a sample from χ1
W

5. ∀j ∈ [N ] : Zj ← Eval(δj , X1, . . . , XdlogNe) ·G−1(Y ) (see Algorithm 5.5.2)b

6. For every j ∈ [N ], let Aj ∈ ZK×Mq consist of the first K rows of Zj . Let Bj ∈ ZV×Mq consist of the
last V rows of Zj .

7. ∀` ∈ [L] : u` ←
∑
j∈[N ]Aj · xj,` − C · e`

8. ∀` ∈ [L] : v` ← d
∑
j∈[N ]Bj · xj,` −D · e`)cp

9. Output (u1, . . . ,uL,v1, . . . ,vL)

aThe protocol can be generalised to any p, q such that p · 2log2 λ · α and p/q are negligible.
bWe can compute δj(x) where x ∈ {0, 1}dlogNe by first flipping xh for every h such that the h-th bit of j is 1. Then,

we multiply all dlogNe bits obtained in this way and we flip the result.

Algorithm 5.5.2. Eval(f,X1, . . . , Xm) [GSW13]
Represent f : Zmq → Zq as an arithmetic circuit over Zq. Then, perform the following operations:
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1. Associate Xi to the i-th input wire for every i ∈ [m].

2. For every gate, perform the following operations:

• If the gate is an addition gate and the input wires are associated with the matrices Z1, Z2, associate
the output wire with Z1 + Z2.

• If the gate adds a constant k ∈ Zq to a wire associated with the matrix Z1, associate the output
wire with Z1 + k ·G.

• If the gate switches the sign of a wire associated with the matrix Z1, associate the output wire
with −Z1.

• If the gate is a multiplication gate and the input wires are associated with the matrices Z1, Z2,
associate the output wire with Z1 ·G−1(Z2).

• If the gate multiplies a wire associated with the matrix Z1 by a constant k ∈ Zq, associate the
output wire with Z1 ·G−1(k ·G).

3. Output the matrix associated with the output wire of the circuit.

The following theorem essentially formalizes Theorem 5.2.5.
Theorem 5.5.3. Assuming the hardness of the Learning with Errors (LWE) problem with a subexponential
modulus-to-noise ratio (see Definition 5.3.3), Protocol 5.5.1 UC-realizes FmCoin among N parties in the FnCoin-
hybrid model, with security against a malicious PPT adversary adaptively corrupting up to N − 1 parties.
For any function η = poly(λ), if we set s1 =

√
K · log q · logK, M = β · (K + V ) · log q, W = β ·K · log q,

V = (η · λ2 − 1) ·K · t, and L = η2 · t3 · λ2 · logN ·K, then the multiplicative stretch of the construction is
m/(t · n) = Ω(η).

Proof. We start by proving security. Let ι be the index of a party that is honest in the first round of the
protocol. Define α := 2−ω(log2 λ) and set s2 ← α · q. Let χ2 be DZ,s2 . We proceed to prove security using a
sequence of indistinguishable hybrids starting from the real world and arriving at the ideal world.

Hybrid H0. This hybrid corresponds to the real execution of the protocol.

Hybrid H1. In this hybrid, whenever a party Pi is corrupted after sending (xi,`)`∈[L], instead of providing
the randomness used to produce these values, we provide the adversary with ExplainχM0 (1λ,xi,`) for every
` ∈ [L] . This hybrid is indistinguishable from H0 due to Theorem 5.3.7.

Hybrid H2. In this hybrid, instead of providing the adversary with the randomness that produces (e`)`∈[L],
we provide it with ExplainχW1 (1λ, e`) for every ` ∈ [L]. This hybrid is indistinguishable from H1 due to
Theorem 5.3.7.

Hybrid H3. In this hybrid, we change the distribution of X1, . . . , XdlogNe. In particular, we sample
U

$← Z(K+V )×M
q and R1, . . . , RdlogNe

$← ZM×(K+V )·t
2 . We then set Xj ← U ·Rj+ιj ·G for every j ∈ [dlogNe]

where ιj denote the j-th bit of ι. H3 is statistically indistinguishable from H2 thanks to the leftover hash
lemma (see Lemma 5.3.4, we are using the fact that M ≥ β · (K + V ) · log q, β > 1 and K = Ω(λ)).

Hybrid H4. In this hybrid, we change the distribution of U and D. In particular, we sample U1
$← ZK×Mq ,

S
$← ZV×Kq , E1

$← χV×M2 and E2
$← χ2

V×W . We then set U2 ← S · U1 + E1, Uᵀ ← (Uᵀ
1 ‖ U

ᵀ
2 ) and

D ← S · C + E2. H4 is indistinguishable from H3 thanks to the security of LWE with subexponential
modulus-to-noise ratio (see Definition 5.3.3).

Hybrid H5. In this hybrid, we change the distribution of C. In particular, we sample it along with a
lattice trapdoor, i.e., (C, T )

$← TrapGen(1K , 1W , q). This hybrid is statistically indistinguishable from H4

(see Theorem 5.3.5, we are using the fact that W ≥ β ·K · log q and K = Ω(λ)).

274



Hybrid H6. In this hybrid, we change the distribution of Y . In particular, we sample it along with a lattice
trapdoor, i.e., (Y, T ′)

$← TrapGen(1K+V , 1M , q). This hybrid is statistically indistinguishable from H5 (see
Theorem 5.3.5, we are using the fact that M ≥ β · (K + V ) · log q and K = Ω(λ)).

Hybrid H7. In this hybrid, we change the distribution of (xι,`)`∈[L]. In particular, for every ` ∈ [L], we
sample u`

$← ZKq u′′`
$← ZKq and v′`

$← ZVq . For every ` ∈ [L], we set v′′` ← S · u′′` and sample a preimage
xι,`

$← PreSample(T ′,w`, s0) where w` is the vector obtained by concatenating u` + u′′` and v′` + v′′` (in
other words, xι,` looks like a discrete Gaussian sample such that Y · xι,` = w`). This hybrid is statistically
indistinguishable from H6 (see Theorem 5.3.5, Lemma 5.3.4 and Lemma 5.3.6, we are using the fact that
s0 =

√
(K + V ) log q ·ω(

√
log(K + V )), M ≥ β · (K +V ) · log q, β > 1 and K = Ω(λ)). We observe that the

probability that ‖xι,`‖∞ >
√
K ·s0 is negligible in λ (see Lemma 5.3.6, we are using the fact that K = Ω(λ)).

Hybrid H8. In this hybrid, we change the distribution of (e`)`∈[L]. In particular, for every ` ∈ [L],
we compute ũ` ← u′′` +

∑
i 6=ιAi · xi,` + U1 · Fι · G−1(Y ) · xι,` where Rι ← FullEval(δι, X1, . . . , XdlogNe,

R1, . . . , RdlogNe, ι) (see Algorithm 5.5.4). Then, we sample a preimage e`
$← PreSample(T, ũ`, s1) (in other

words, e` looks like a discrete Gaussian sample such that C · e` = ũ`). This hybrid is statistically in-
distinguishable from H7 (see Theorem 5.3.5, Lemma 5.3.4 and Lemma 5.3.6, we are using the fact that
s1 =

√
K log q · ω(

√
logK), W ≥ β ·K · log q, β > 1 and K = Ω(λ)). Observe that xι,` leaks nothing about

u′′` as u` and v′` mask all the information.

Algorithm 5.5.4. FullEval(f,X1, . . . , Xm, R1, . . . , Rm,x) [GSW13]
Represent f : Zmq → Zq as an arithmetic circuit over Zq. Then, perform the following operations:

1. Associate (Xi, Ri, xi) to the i-th input wire for every i ∈ [m].

2. For every gate, perform the following operations:

• If the gate is an addition gate and the input wires are associated with the triples
(Z1, S1, z1), (Z2, S2, z2), associate the output wire with (Z1 + Z2, S1 + S2, z1 + z2).

• If the gate adds a constant k ∈ Zq to a wire associated with the triple (Z1, S1, z1), associate the
output wire with (Z1 + k ·G,S1, z1 + k).

• If the gate switches the sign of a wire associated with the triple (Z1, S1, z1), associate the output
wire with (−Z1,−S1,−z1).

• If the gate is a multiplication gate and the input wires are associated with the triples
(Z1, S1, z1), (Z2, S2, z2), associate the output wire with (Z1 ·G−1(Z2), S1 ·G−1(Z2)+z1 ·S2, z1 ·z2).

• If the gate multiplies a wire associated with the triple (Z1, S1, z1) by a constant k ∈ Zq, associate
the output wire with (Z1 ·G−1(k ·G), S1 ·G−1(k ·G), k · z1).

3. Output the second element of the triple associated with the output wire of the circuit.

Claim 5.5.5 ([GSW13]). Let Xi = U · Ri + xi · G where Ri ∈ ZM×(K+V )·t
2 for every i ∈ [m].

Let f : Zmq → Zq be a function. Then, Eval(f,X1, . . . , Xm) = U · Rf + f(x) · G, where Rf ←
FullEval(f,X1, . . . , Xm, R1, . . . , Rm,x).

Proof. For every wire w, let Xw be the matrix associated with w during the execution of Eval(f,X). Let
Rw be the second element in the pair associated with w during the execution of FullEval(f,X,R). Let
xw be the value associated with w during the evaluation of f(x). We show that for any wire w, we have
Xw = U · Rw + xw · G. This true for the input wires, and we show that it holds for every other wire w by
induction. Consider the gate that outputs wire w:
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• If the gate is an addition gate with input wires u, v, then

Xw = Xu +Xv = U ·Ru + xu ·G+ U ·Rv + xv ·G
= U · (Ru +Rv) + (xu + xv) ·G = U ·Rw + xw ·G.

• If the gate adds a constant k ∈ Zq to a wire u, then

Xw = Xu + k ·G = U ·Ru + xu ·G+ k ·G
= U ·Ru + (xu + k) ·G = U ·Rw + xw ·G.

• If the gate switches the sign of a wire u, then

Xw = −Xu = −U ·Ru − xu ·G
= U · (−Ru) + (−xu) ·G = U ·Rw + xw ·G.

• If the gate is a multiplication with input wires u, v, then

Xw = Xu ·G−1(Xv) = U ·Ru ·G−1(Xv) + xu ·G ·G−1(Xv)

= U ·Ru ·G−1(Xv) + xu ·Xv

= U ·Ru ·G−1(Xv) + xu · (U ·Rv + xv ·G)

= U · (Ru ·G−1(Xv) + xu ·Rv) + (xu · xv) ·G = U ·Rw + xw ·G.

• If the gate multiplies a wire u by a constant k ∈ Zq, then

Xw = Xu ·G−1(k ·G) = U ·Ru ·G−1(k ·G) + xu ·G ·G−1(k ·G)

= U · (Ru ·G−1(k ·G)) + (k · xu) ·G = U ·Rw + xw ·G.

This ends the proof of the claim.

Let G1 denote the matrix consisting of the first K rows of G. Let G2 be the matrix consisting of the last
V rows of G. Let Y1 be the matrix consisting of the first K rows of Y . Let Y2 be the matrix consisting of
the last V rows of Y . Observe that, for every ` ∈ [L], we have∑

i∈[N ]

Ai · xi,` − C · e` = Aι · xι,` − C · e` +
∑
i 6=ι

Ai · xi,`

= U1 · Fι ·G−1(Y ) · xι,` + δι(ι) ·G1 ·G−1(Y ) · xι,` − ũ` +
∑
i6=ι

Ai · xi,`

= Y · xι,` − u′′` = u`.

∑
i∈[N ]

Bi · xi,` −D · e` = Bι · xι,` −D · e` +
∑
i 6=ι

Bi · xi,`

=
∑
i∈[N ]

(
U2 · Fi ·G−1(Y ) · xi,` + δi(ι) ·G2 ·G−1(Y ) · xi,`

)
− (S · C + E2) · e`

=
∑
i∈[N ]

(S · U1 + E1) · Fi ·G−1(Y ) · xi,` + Y2 · xι,` − (S · C + E2) · e`

= v′` + v′′` + S ·
( ∑
i∈[N ]

U1 · Fi ·G−1(Y ) · xi,` − C · e`
)
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+
∑
i∈[N ]

E1 · Fi ·G−1(Y ) · xi,` − E2 · e`

= v′` + S · u′′` + S ·
(
U1 · Fι ·G−1(Y ) · xι,` +

∑
i 6=ι

Ai · xi,` − ũ`

)
+
∑
i∈[N ]

E1 · Fi ·G−1(Y ) · xi,` − E2 · e`

= v′` +
∑
i∈[N ]

E1 · Fi ·G−1(Y ) · xi,` − E2 · e`.

If Γ is an upper-bound on ‖Fi‖∞ for every j ∈ [N ], Lemma 5.3.6 implies a polynomial c(λ) such that for
every ` ∈ [L], with overwhelming probability,∥∥∥∥∥∥

∑
i∈[N ]

E1 · Fi ·G−1(Y ) · xi,` − E2 · e`

∥∥∥∥∥∥
∞

≤M 5
2

√
M +W (K + V )t · s0 · Γ · αq +W

3
2

√
M +Ws1 · αq

≤ c · Γ · αq.

If we compute δi as in Protocol 5.5.1, then for every i ∈ [N ],

‖Fi‖∞ ≤ ((K + V ) · t)dlogNe

Since N,K, V and t are polynomial quantities in λ, we have ‖Fi‖∞ ≤ 2O(log2 λ).

Hybrid H9. In this hybrid, we changed the distribution of (v′`)`∈[L]. Specifically, for every ` ∈ [L], first,
we sample v`

$← ZVp and then, we set v′` to be a random element in ZVq such that dv′` + zcp = v` for
every z ∈ ZV having ‖z‖∞ ≤ c · Γ · α · q. This hybrid is statistically indistinguishable from H8. Indeed,
since α(λ), 1/q(λ) ≤ negl(λ), the statistical distance between the distribution of v′` in this hybrid and in the
previous one is upper-bounded by

V · p · 2c · α · q + 1

q
≤ negl(λ).

This is because each entry of v′` is now uniformly distributed over a set with q− p · (2c ·α · q+ 1) (i.e. all the
elements in Zq except those that have distance smaller than c · α · q from q/4 and (3/4)q). H9 corresponds
to the ideal execution of the protocol. The simulation strategy is sketched in simulator 5.5.6.

Simulator 5.5.6. One-Round One-Query CTE from LWE

1. Receive the output from the functionality and interpret it as a vector (u1, . . . ,uL,v1, . . . ,vL) where,
for every ` ∈ [L], u` ∈ ZKq and v` ∈ ZVp .

2. ∀` ∈ [L], sample a random v′` ∈ ZVq such that dv′`+zcp = v` for every z ∈ ZV having ‖z‖∞ ≤ c·Γ·α·q.

3. S $← ZV×Kq

4. ∀` ∈ [L], u′′`
$← ZKq

5. ∀` ∈ [L], v′′` ← S · u′′`

6. ∀` ∈ [L], w` ← (u` + u′′` ‖ v′` + v′′` )

7. (Y, T ′)
$← TrapGen(1K+V , 1M , q)

8. ∀` ∈ [L], x` $← PreSample(T ′,w`, s0)
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9. Take the first honest party Pι activated by the adversary and send (x`)`∈[L] on its behalf.

10. For any other honest party Pi, send xi,`
$← χM0 for every ` ∈ [L]

11. When any honest party Pi is corrupted, provide the adversary with ExplainχM0 (1λ,xi,`) for every
` ∈ [L].

12. After all parties have sent their messages, for any i ∈ [N ] and ` ∈ [L] such that ‖xi,`‖∞ >
√
K · s0,

set xi,` ← 0.

13. U1
$← ZK×Mq

14. (C, T )
$← TrapGen(1K , 1W , q)

15. E1
$← χV×M2

16. E2
$← χV×W2

17. U2 ← S · U1 + E1

18. D ← S · C + E2

19. U ← (Uᵀ
1 ‖ U

ᵀ
2 )

20. ∀j ∈ [dlogNe] : Fj
$← ZM×(K+V )·t

2

21. ∀j ∈ [dlogNe] : Xj ← U ·Rj + ιj ·G

22. ∀i ∈ [N ] : Zi ← Eval(δi, X1, . . . , XdlogNe) ·G−1(Y )

23. For every i ∈ [N ], let Ai ∈ ZK×Mq consist of the first K rows of Zi. Let Bi ∈ ZV×Mq consist of the
last V rows of Zi.

24. Fι ← FullEval(δι, X1, . . . , XdlogNe, R1, . . . , RdlogNe, ι)

25. ∀` ∈ [L], ũ` ← u′′` +
∑
i 6=ιAi · xi,` + U1 · Fι ·G−1(Y ) · xι,`

26. ∀` ∈ [L], e` $← PreSample(T, ũ`, s1)

27. Send (Xj)j∈[dlogNe], Y C, D and (ExplainχW1 (1λ, e`))`∈[L] on behalf of FnCoin.

We now analyse our protocol’s stretch. The number of seed bits is

n = O
(

logN · (K + V ) ·M · t+ (K + V ) ·W · t+ L ·W · λ2 + L ·W · λ · log s1

)
.

If s1 =
√
K · log q · logK, M = β · (K + V ) · log q and W = β ·K · log q, then

n = O
(

logN · (K + V )2 · t2 + L ·K · t · (λ2 + λ · logK + λ · log t)
))
.

Now, t,K are polynomial quantities in λ, so log t, logK ∈ O(log λ), and thus

n = O
(

logN · (K + V )2 · t2 + L ·K · t · λ2
)
.

The number of coins produced by the protocol is L·(K ·t+V ), which implies that if we pick V = (η·λ2−1)·K ·t
and L = η2 · t3 · λ2 · logN ·K, then the multiplicative stretch of our construction becomes Ω(η).
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Corollary 5.5.7. Under the hardness of LWE with a subexponential modulus-to-noise ratio, for any polyno-
mial function N(λ), there exists a polynomial L(λ) and a computational explainable extractor for the class
of entropy sources S, such that for every S ∈ S, there exist i ∈ [N ] and a PPT algorithmM such that the
source S can be sampled as follows:

1. xi
$← {0, 1}L(λ)

2. ((xj)j 6=i, aux)
$←M(1λ,xi)

3. Output (x1, . . . ,xN ), aux.

5.6 One-Round, (1 + ε)-Sample Coin Tossing Extension from Hid-
den Subgroups

In this section, we present our construction for one-round one-query CTE with universally composable
security, from a variety of standard public-key assumptions. We previously overviewed this construction in
Section 5.2.3, and invite the reader to review the basic definitions in Section 5.3.1. We begin by defining the
Hidden Subgroup Framework, and presenting a functionality to generate the trusted setup for an instance.
Next, we give our CTE protocol from hidden subgroups, after which we present a security theorem, and then
prove the theorem. Finally, in Section 5.6.1 we prove that the framework can be instantiated from the DDH
assumption in any group, in Section 5.6.2 from Paillier Encryption, and in Section 5.6.3 from the hidden
subgroup membership assumption in class groups.
Definition 5.6.1 (Hidden Subgroup Framework for CTE). The hidden subgroup framework for coin tossing
extension consists of a tuple of PPT algorithms (m,n,Gen,Uniform,SubSample,Add,Convert,Explain) with
the following syntax

• m and n are polynomial functions in the security parameter.

• Gen takes as input the security parameter 1λ. It outputs the description of a finite abelian group (G, ·),
the description of a subgroup H, a positive integer R, and auxiliary information aux.

• Uniform takes as input aux and outputs an element in G.

• SubSample is deterministic and takes as input aux along with a binary string r ∈ {0, 1}∗. The output is
an element in the subgroup H.

• Add takes as input aux, strings r1, . . . , r` ∈ {0, 1}R for any ` ∈ N and r′ ∈ {0, 1}n(λ), the output is
another string s ∈ {0, 1}n(λ).

• Convert is deterministic and takes as input a group element g ∈ G and aux. The output is an element in
{0, 1}m(λ).

• Explain takes as input an element x ∈ {0, 1}m(λ) along with aux, the output is an element g ∈ G.

We require the following properties:

1. (Samplability of Uniform Distribution). The following distributions are statistically close{
u,G,H,R, aux

∣∣∣(G,H,R, aux) $← Gen(1λ), u
$← Uniform(aux)

}
{
u,G,H,R, aux

∣∣∣(G,H,R, aux) $← Gen(1λ), u
$← G

}
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2. (Hidden Subgroup). The following distributions are computationally indistinguishable{
(u,G,H,R, aux)

∣∣∣∣∣(G,H,R, aux)
$← Gen(1λ)

u
$← Uniform(aux)

}
(u,G,H,R, aux)

∣∣∣∣∣∣∣
(G,H,R, aux)

$← Gen(1λ)

r
$← {0, 1}R

u← SubSample(aux, r)


3. (Correctness of Addition). For every PPT adversary A, we have

Pr



g′ ·
∏
i∈[`]

gi 6= h,

and
∀j ∈ [`] : rj ∈ {0, 1}R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(G,H,R, aux)
$← Gen(1λ)

(r1, . . . , r`)
$← A(1λ, G,H,R, aux)

r′
$← {0, 1}n(λ)

∀i ∈ [`] : gi ← SubSample(aux, ri)

g′ ← SubSample(aux, r′)

s
$← Add(r1, . . . , r`, r

′)

h← SubSample(aux, s)


≤ negl(λ)

4. (Security of Flooding). For every PPT adversary A that outputs r1, . . . , r` ∈ {0, 1}R for some ` ∈ N
and its internal state φ, the following distributions are computationally indistinguishable

s, φ

∣∣∣∣∣∣∣∣∣∣∣

(G,H,R, aux)
$← Gen(1λ)

(r1, . . . , r`, φ)
$← A(1λ, G,H,R, aux)

r′
$← {0, 1}n(λ)

s
$← Add(r1, . . . , r`, r

′)

 s, φ

∣∣∣∣∣∣∣∣
(G,H,R, aux)

$← Gen(1λ)

(r1, . . . , r`, φ)
$← A(1λ, G,H,R, aux)

s
$← {0, 1}n(λ)


5. (Explainability). The following distributions are computationally indistinguishable(x, g,G,H,R, aux)

∣∣∣∣∣∣∣
(G,H,R, aux)

$← Gen(1λ)

g
$← Uniform(aux)

x← Convert(g, aux)

(x, g,G,H,R, aux)

∣∣∣∣∣∣∣∣
(G,H,R, aux)

$← Gen(1λ)

x
$← {0, 1}m(λ)

g
$← Explain(x, aux)


Functionality 5.6.2. Setup for the Hidden Subgroup Framework

Let NIZK be a simulation-extractable NIZK for the relation

R :=

{
x := (g,R, aux)

w := r

∣∣∣∣∣r ∈ {0, 1}Rg = SubSample(aux, r)

}
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Initialisation: Upon activation, perform the following operations

1. (G,H,R, aux)
$← Gen(1λ)

2. σ $← NIZK.Setup(1λ)

3. Output (σ,G,H,R, aux) to all parties.

Protocol 5.6.3. One-Round CTE from Hidden Subgroups

Let NIZK be the simulation-extractable NIZK for the relation R used in FHS-Setup (see Functional-
ity 5.6.2).

Initialisation: Each party Pi calls FHS-Setup and receives (σ,G,H,R, aux) as a response.

Sample: Each party Pi performs the following operations.

1. ri
$← {0, 1}R.

2. gi ← SubSample(aux, ri).

3. πi $← NIZK.Prove
(
σ, (gi, R, aux), ri

)
.

4. Broadcast (gi, πi) and receive (gj , πj) from every other party Pj .

5. S ← {j ∈ [N ]|NIZK.Verify
(
σ, (gj , R, aux), πj

)
= 1}.

6. Receive s
$← {0, 1}n(λ) from FnCoin.

7. h← SubSample(aux, s).

8. g ← h ·
∏
i∈S gi.

9. Output Convert(g, aux)

The following theorem essentially formalizes Theorem 5.2.4.
Theorem 5.6.4. If (m,n,Gen,Uniform,SubSample,Add,Convert,Explain) is an instantiation of the hidden sub-
group framework of Definition 5.6.1 and NIZK is a simulation-extractable NIZK for the relation R (see Func-
tionality 5.6.2), then Protocol 5.6.3 UC-realizes FmCoin among N -parties in the presence of a malicious PPT
adversary statically corrupting up to N − 1 parties, in the (FnCoin,FHS-Setup)-hybrid model (see Functional-
ity 5.6.2). The round complexity of the protocol is r = 1, the sampling complexity is t = 1, and the additive
stretch is m(λ)− n(λ).

Proof. Consider Simulator 5.6.5.
Simulator 5.6.5. Simulator for CTE from Hidden Subgroups
Initialisation:

1. (G,H,R, aux)
$← Gen(1λ)

2. (σ, τ)
$← NIZK.Sim1(1λ)

3. Provide the adversary with (σ,G,H,R, aux)

Sample: Let Pι be a fixed honest party. The simulator performs the following operations:

1. For every honest Pi except Pι, compute ri and (giπi) as in Protocol 5.6.3.
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2. Obtain x ∈ {0, 1}m(λ) from the functionality.

3. u $← Explain(x, aux)

4. r′
$← {0, 1}n(λ)

5. g′ ← SubSample(aux, r′)

6. gι ← g′ · u

7. πι $← NIZK.Sim2

(
τ, (gι, R, aux)

)
8. Send all (gi, πi)i∈H to the adversary.

9. Receive (gj , πj)j 6∈H from the adversary.

10. Let S be the subset of j ∈ [N ] such that NIZK.Verify
(
σ, (gj , R, aux), πj

)
= 1.

11. For every j ∈ S \H compute rj ← NIZK.Extract
(
τ, (gj , R, aux), πj

)
.

12. If there exists a j ∈ S such that rj = ⊥, output ⊥.

13. Otherwise, provide s
$← Add(aux, (rj)j∈S , r

′) to the adversary on behalf of FnCoin.

We show that no PPT adversary can distinguish between the real protocol and the interaction between
functionality and simulator. We proceed by considering the following sequence of indistinguishable hybrids.

Hybrid H0. This corresponds to Protocol 5.6.3.

Hybrid H1. In this hybrid, we change the CRS. Specifically, instead of generating σ using NIZK.Setup(1λ),
we compute (σ, τ)

$← NIZK.Sim1(1λ). This hybrid is indistinguishable from the previous one thanks to the
security of the extractable NIZK.

Hybrid H2. In this hybrid, we pick a honest party Pι and we simulate its proofs πι using the trapdoor τ .
Once again, this hybrid is indistinguishable from H1 thanks to zero-knowledge of NIZK.

Hybrid H3. In this hybrid, we try to extract the witnesses rj from the NIZKs of all the corrupted parties.
If the extraction fails, despite the NIZK verifies, we output ⊥. This hybrid is indistinguishable from H2

thanks to the simulation-extractability of the NIZK.

Hybrid H4. In this hybrid, we sample u $← Uniform(aux) and we modify the message of Pι. Specif-
ically, instead of sending gι ← SubSample(aux, rι) where rι

$← {0, 1}R, we send gι ← u · v where
v ← SubSample(aux, r′) and r′

$← {0, 1}n(λ). This hybrid is indistinguishable from H3 due to the first
and the second property of the framework.

Hybrid H5. In this hybrid, instead of sampling s at random in {0, 1}n(λ), we compute it as s ←
Add(aux, (rj)j∈S , r

′). This hybrid is indistinguishable from H4 by the first and fourth properties of the
framework. Indeed, gι leaks no information about r′ as u is statistically close to random in G. Notice that,
by the third property of the framework, the output of the protocol is now Convert(u, aux).

Hybrid H6. In this hybrid, instead of sampling u using Uniform, we sample a random element x $← {0, 1}m(λ)

and we set u $← Explain(x, aux). This hybrid is indistinguishable from H5 thanks to the last property of the
framework. This hybrid corresponds to the ideal world.

5.6.1 The Hidden Subgroup Framework from DDH
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Algorithm 5.6.6. Hidden Subgroup Framework from DDH

Let (Gλ, ·)λ∈N be a sequence of cyclic groups where Gλ has prime order p(λ). Let gλ be a generator for
Gλ. Suppose that p(λ) = 2O(λ). Let µG and µL be the uniform distributions over Gλ and {0, 1}L(λ)

where L(λ) is a polynomial respectively. Suppose that µL is µG-explainable. Let (ConvertL,ExplainL)
be the conversion algorithm and explaining algorithm that guarantee this. Let m(λ) be 2L(λ). Let n(λ)
be λ+ log p(λ).

Gen(1λ):

1. r $← [p(λ)]

2. g1 ← gλ

3. g2 ← grλ

4. Hλ ← {(h1, h2)|∃r ∈ [p(λ)] s.t. h1 = gr1, h2 = gr2}

5. Output
(
Gλ ×Gλ, Hλ, n(λ), aux = (g1, g2)

)
Uniform(aux = (g1, g2)):

1. r $← [p(λ)]

2. Output grλ.

SubSample(aux = (g1, g2), r):

1. Let R be the length of r

2. t← (
∑R
i=1 r[i] · 2i−1) mod p(λ)

3. h1 ← gt1

4. h2 ← gt2

5. Output (h1, h2)

Add(r1, . . . , r`, r
′):

1. ∀i ∈ [`] : ti ← (
∑n(λ)
j=1 ri[j] · 2j−1) mod p(λ)

2. t′ ← (
∑n(λ)
j=1 r

′[j] · 2j−1) mod p(λ)

3. z ← (t′ +
∑
i∈[`] ti) mod p(λ).

4. Output a random s ∈ {0, 1}n(λ) such that
∑n(λ)
j=1 s[j] · 2j−1 ≡ z mod p(λ).

Convert(u = (u1, u2), aux = (g1, g2)):

1. Output ConvertL(1λ, u1) and ConvertL(1λ, u2).

Explain(x, aux = (g1, g2)):

1. Output ExplainL(1λ,x1) and ExplainL(1λ,x2) where x = (x1 ‖ x2) and x1,x2 ∈ {0, 1}L(λ).

Theorem 5.6.7. Let (Gλ, ·)λ∈N be a sequence of cyclic groups where Gλ has prime order p(λ). Let gλ be a
generator for Gλ. Let µG and µL respectively be the uniform distributions over Gλ and {0, 1}L(λ), where
L(λ) is a polynomial. Suppose that µL is µG-explainable. If the decisional Diffie-Hellman assumption holds
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in (Gλ, ·)λ∈N, then Algorithm 5.6.6 is an instantiation of the hidden subgroup framework of Definition 5.6.1.

Proof. We immediately see that the first property holds with perfect indistinguishability. The correctness of
the addition is always satisfied. The security of flooding is instead guaranteed by the fact that the uniform
distribution over [p(λ)] is statistically close to the distribution obtained by reducing a random element in
[2λ+log p] modulo p(λ). The fifth property is guaranteed by the µG-explainability of µL. It remains to show
the second property. It is easy to show that it is an immediate consequence of the DDH assumption.

5.6.2 The Hidden Subgroup Framework from Pallier Encryption.
Algorithm 5.6.8. Hidden Subgroup Framework from QR and DCR

Let m(λ) be 2Θ(log λ). Let n(λ) be 5λ/2 +m(λ)/2.

Gen(1λ):

1. Sample random (m(λ) + λ)/4-bit safe-primes p, q.

2. N ← p · q

3. H ← {r2N |r ∈ Z∗N2}

4. h $← H

5. Output
(
Z∗N2 , H,R(λ) := 3λ/2 +m(λ)/2, aux := h

)
Uniform(aux = h):

1. r $← Z∗N2

2. Output r.

SubSample(aux = h, r):

1. Let R be the length of r

2. t← (
∑R
i=1 r[i] · 2i−1)

3. Output ht

Add(r1, . . . , r`, r
′):

1. ∀i ∈ [`] : ti ←
∑L(λ)
j=1 ri[j] · 2j−1

2. t′ ←
∑n(λ)
j=1 r

′[j] · 2j−1

3. z ← t′ +
∑
i∈[`] ti

4. Output the bit representation of z.

Convert(u, aux = h):

1. Output u mod 2m(λ) in binary notation.
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Explain(x, aux = h):

1. z ←
∑m(λ)
j=1 x[j] · 2j−1

2. Output a random u ∈ Z∗N2 such that u mod 2m(λ) = x.

Theorem 5.6.9. If the quadratic residuosity and decisional composite residuosity assumptions hold over the
Paillier group, then Algorithm 5.6.8 is an instantiation of the hidden subgroup framework of Definition 5.6.1.

Proof. We immediately see that the first property holds with perfect indistinguishability. The correctness of
the addition is always satisfied. The security of flooding is instead guaranteed by the fact that the uniform
distribution over [2n(λ)] is statistically close to the distribution obtained by shifting a random element in
[2n(λ)] by

∑
i∈[`] ti. This is because ` is polynomial in λ and each ti belongs to an interval 2λ times smaller

than 2n(λ). The fifth property is guaranteed by the fract that the uniform distribution over Z∗N2 is statistically
close to the uniform distribution over ZN2 . Moreover, m(λ) is roughly logN2 − λ.

It remains to show the second property. Since p and q are large, random, safe-primes, there exist distinct
primes p′, q′ such that p = 2p′ + 1 and q = 2q′ + 1. Therefore, it must be that Z∗N2 is isomorphic to
ZN ×Z2×Z2×ZN ′ where N ′ = p′ · q′. We notice that R(λ) is roughly logN ′+ λ. Furthermore, we observe
that h belongs to the subgroup of Z∗N2 isomorphic to ZN ′ . We conclude that SubSample outputs values that
are statistically close to uniformly random elements of H. We show that, under QR and DCR, the uniform
distribution over H is indistinguishable from the uniform distribution over Z∗N2 . We do this by means of a
series of hybrids.

Hybrid H0. In this hybrid, we provide the adversary with the RSA modulo N and r $← Z∗N2 .

Hybrid H1. In this hybrid, we provide the adversary with the RSA modulo N and r2 mod N2 where
r

$← Z∗N2 . This hybrid is indistinguishable from H0 due to the QR assumption.

Hybrid H2. In this hybrid, we provide the adversary with the RSA modulo N and (rN )2 mod N2 where
r

$← Z∗N2 . This hybrid is indistinguishable from H1 due to the DCR assumption. Observe that now we
provide the adversary with a random value in H. This ends the proof.

5.6.3 The Hidden Subgroup Framework from Class Groups.
Algorithm 5.6.10. Hidden Subgroup Framework from Class Groups

Let L(λ) be 2Θ(log λ). Let n(λ) be λ+R(λ).

Gen(1λ):

1. (G,H,F, h, f, p, aux′)
$← CLGen(1λ, L(λ)) a

2. Output
(
G,H,L, aux := (h, f, p, aux′)

)
Uniform(aux = (h, f, p, aux′)):

1. r $← [2L(λ)]

2. s $← [p]

3. Output fs · hr.

SubSample(aux = (h, f, p, aux′), r):

1. Let R be the length of r
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2. t←
∑R
i=1 r[i] · 2i−1

3. Output ht

Add(r1, . . . , r`, r
′):

1. ∀i ∈ [`] : ti ←
∑L
j=1 ri[j] · 2j−1

2. t′ ←
∑n(λ)
j=1 r

′[j] · 2j−1

3. z ← t′ +
∑
i∈[`] ti

4. Output the bit representation of z.
aCLGen(1λ, L) generates the parameters of a class groups where the order is upper-bounded by 2L−λ.

Theorem 5.6.11. If the hidden subgroup membership assumption holds over class groups, then
(Gen,SubSample,Add,Uniform) in Algorithm 5.6.10 satisfy the first four properties of the hidden subgroup
framework of Definition 5.6.1.

Proof. We immediately see that the first property holds with statistical indistinguishability (we recall that
CLGen(1λ, L) outputs an element h ∈ H of order 2λ times smaller than 2L, an element f of order p and
G = 〈h〉 × 〈f〉). The correctness of the addition is always satisfied. The security of flooding is instead
guaranteed by the fact that the uniform distribution over [2n(λ)] is statistically close to the distribution
obtained by shifting a random element in [2n(λ)] by

∑
i∈[`] ti. This is because ` is polynomial in λ and each

ti belongs to an interval 2λ times smaller than 2n(λ). The second property follows immediately from the
hidden subgroup assumption over class groups. This ends the proof.

5.7 O(N)-Round, One-Sample Coin Tossing Extension from One-
Way Functions

In this section, we present our construction for constant-round one-query CTE with standalone security from
one-way functions. We previously overviewed this construction in Section 5.2.3. We begin by presenting the
functionality for coin tossing with identifiable abort, then describe our CTE protocol that uses the foregoing
functionality to achieve full security, and finally prove security.
Functionality 5.7.1. FmCoin+IA. Coin Tossing with Identifiable Abort
Initialisation: On init from all parties, the functionality activates.

Sample: On receiving (flip, sid, T ) where T ⊆ [N ] from all parties in T , the functionality samples
s

$← {0, 1}m(λ) and sends (sampled, sid, s) to the adversary. If the adversary replies with (abort, sid, S),
where S ⊆ T is a non-empty subset of corrupted players, the functionality outputs (abort, sid, S) to all
honest parties in T . Otherwise, it outputs (coins, sid, s) to all the honest parties in T .

Protocol 5.7.2. CTE from Coin Tossing with IA

Let G : {0, 1}n(λ) → {0, 1}m(λ) be a PRG.

Initialisation: The parties send init to FmCoin+IA and FnCoin.

Sample: Let sid be a session identity.

1. T ← [N ].
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2. The parties send (flip, sid, T ) FmCoin+IA obtaining a value w. If w = (abort, sid, S) where S ⊂ [N ],
the parties set T ← T \ {S} and repeat the operations in this step.

3. If |T | = 1, the only party in T outputs s $← {0, 1}m(λ).

4. Otherwise, the parties call FnCoin. Let u be the answer.

5. The parties output s← w ⊕G(u).

Theorem 5.7.3. Protocol 5.7.2 is a standalone fully-secure N -party coin tossing extension protocol with black-
box standalone simulation against a malicious PPT adversary statically corrupting up to N−1 parties in the
FmCoin+IA-hybrid model. The sampling complexity is one, the additive stretch of the protocol is m(λ)− n(λ),
and the number of sequential invocations of FmCoin+IA is bounded by N − 1.

Proof. We prove the theorem via simulator 5.7.4.
Simulator 5.7.4. CTE from Coin Tossing with IA

1. The simulator obtains s from the functionality.

2. Every time the parties call FmCoin+IA, the simulator samples a fresh u
$← {0, 1}n(λ) and provides the

adversary with w ← s⊕G(u).

3. When the parties call FnCoin, the simulator provides the last u it sampled.

It is easy to see that, under the security of the PRG G, no PPT adversary can distinguish between the real
protocol and its simulation. Indeed, the only difference between the two worlds is that in the aborting calls
to FmCoin+IA, the adversary is not provided with random values but with the actual output of the functionality
masked by random PRG images. Under the security of G, the adversary cannot distinguish between the two
cases. This ends the proof.

Corollary 5.2.3. If one-way functions exist, then for any constant number of parties there is a constant-round
fully-secure CTE protocol in the plain model, with standalone black-box simulatability against a malicious
PPT adversary statically corrupting all parties but one. This construction is black-box in the OWF.

Proof. Goyal et al. [GLOV12] proposed a constant-round protocol for black-box standalone-simulatable coin
tossing in the malicious, dishonest majority setting, assuming only black-box use of one-way functions. They
claim only security with (non-identifiable) abort in their own work, but a careful inspection of their protocol
reveals that all aborts are unanimously traceable to a single party if all communication is performed via a
broadcast channel. In other words, their protocol realizes FmCoin+IA. Combining this fact with theorem 5.7.3
and the fact that black-box constructions of PRG from OWFs are possible [HILL99] yields the corollary.

5.8 Lower Bound for Statistical, Black-Box Coin Tossing Exten-
sion

In this section, we present our lower bound against constant-round superlogarithmic-stretch black-box
simulation-secure CTE. We previously overviewed this construction in Section 5.2.4, and invite the reader
to review the basic definitions and common tools we use in Section 5.3.2. We begin with a lemma about
the entropy difference between statistically-close distributions, after which we give our main theorem and its
proof.
Lemma 5.8.1. Let h(p) be −(p · log p+(1−p) · log(1−p)) for every p ∈]0, 1[. Let H denote Shannon’s entropy.
Let (X,Y ) and (X ′, Y ′) be random variables over a domain of size D. Let the statistical distance between
(X,Y ) and (X ′, Y ′) be ε. Then, H(Y |X)− H(Y ′|X ′) ≤ 2h(ε) + 2ε · log |D|.
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Proof. By definition of statistical distance, there is a coupling of (X,Y ) and (X ′, Y ′) such that, defining
Θ,Φ as the indicator functions for X = X ′ and (X,Y ) = (X ′, Y ′), Pr[Θ = 1] = Pr[Φ = 1] = ε. We have,

H(Y |X)− H(Y ′|X ′) = H(X,Y )− H(X)− H(X ′, Y ′) + H(X ′). (5.5)

Since H(X,X ′) = H(X) + H(X ′|X) = H(X ′) + H(X|X ′), H(X)−H(X ′) = H(X|X ′)−H(X ′|X). We use the
argument used to show Fano’s inequality to bound H(X|X ′). Since Θ is a function of X,X ′,

0 ≤ H(X|X ′)
= H(Θ, X|X ′)
≤ H(Θ) + H(X|X ′,Θ)

≤ h(ε) + Pr[Θ = 0] · H(X|X ′,Θ = 0) + Pr[Θ = 1] · H(X|X ′,Θ = 1)

= h(ε) + Pr[Θ = 0] · H(X|X ′,Θ = 0)

≤ h(ε) + ε · log |D|.

Similarly, bound exists for H(X ′|X); hence |H(X) − H(X ′)| ≤ h(ε) + ε · log |D|. Further, using the same
argument, |H(X,Y ) − H(X ′, Y ′)| ≤ h(ε) + ε · log |D|. Thus, by (5.5), H(Y |X) − H(Y ′|X ′) ≤ 2h(ε) + 2ε ·
log |D|.

Theorem 5.2.6. Every r-round CTE protocol with one call to the seed oracle and black-box standalone
statistical simulation security against a rushing semi-malicious adversary who corrupts a majority of parties
must have additive stretch in O(r · log λ).

Proof. Due to Theorem 5.4.3, we can assume that the protocol terminates with the call to FnCoin. We consider
the adversary that, in each round, after receiving the messages of the honest parties, generates the messages
of the corrupted players following the protocol. Let U iH be the random variable that denotes the messages
of the honest parties up to the i-th round (included). Similarly, let U iC denote the messages of the corrupted
players up to the i-th round (included). We set U0

H and U0
C to the empty string. Let u ∈ {0, 1}n(λ) be the

random coins produced by FnCoin. Finally, let s ∈ {0, 1}m(λ) be the output of the protocol.
We consider the Shannon entropy diagram of the protocol, a technique previously used by Abram,

Obremski, and Scholl [AOS23]. For simplicity, for any random variables (X0, Y0) and (X1, Y1) parametrised
by the security parameter λ, we write H(X0|Y0) ∼ H(X1|Y1) if H(X0|Y0) = H(X1|Y1) + negl(λ). In a similar
way, for functions f(λ) and g(λ), we write f . g if there exists a negligible function η = negl(λ) such that
f ≤ g + η.

We recall that the statistical distance of (UrH , U
r
C ,u, s) in the ideal and in the real world is smaller

than ε, where ε = negl(λ) (this is implied by the security of the protocol). We also notice that h(ε) :=
−ε · log ε− (1− ε) · log(1− ε) is negligible when ε is negligible. Finally, we notice that the probability space
of our protocol has size 2λ

O(1) . Due to these facts, and Lemma 5.8.1, we conclude that conditional entropies
in the ideal world and the real world differ only by a negligible amount.

We start by observing that H(s|UrH , UrC ,u) ∼ 0. Indeed, the output of the protocol is, with overwhelming
probability, uniquely determined by UrH , UrC and u.

In the real world, u is independent of both UrH and UrC . We conclude that the mutual information
I(u; (UrH , U

r
C)) ∼ 0. In the real world, since we are considering a honest adversary, we also have that, for

every i ∈ [r], U iC is independent of U iH conditioned on (U i−1
H , U i−1

C ). Moreover, U1
H and U1

C are independent.
Therefore, I(U iH ;U iC |U

i−1
H , U i−1

C ) ∼ 0 for every i ∈ [r].
Now, consider the ideal world and let Q be a polynomial upper bound on the running time of the

simulator. If we were in the UC model, it is easy to notice that U iC is independent of (U iH , s) conditioned on
U i−1
H , U i−1

C . This of course, it is no longer true when the simulator is allowed to rewind the adversary. Let Ti
be the random variable denoting the number of times the simulator rewinds the adversary in the i-th round.
Then, Ti ≤ Q, and U iC can be thought of as is the Ti’th value in the sequence {U iC [j]}j∈[Q] where U iC [j] is
the response of the adversary in j’th rewind. Each U iC [j] is independently sampled by the ‘honest’ adversary
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according to the protocol instruction, conditioned on the messages up to round i − 1 being (U i−1
H , U i−1

C ).
Hence, for each j ∈ [Q], I(U iC [j]; (U iH , s)|U i−1

H , U i−1
C , {U iC [k]}k∈[j−1]) = 0. Then,

I(U iC ; (U iH , s)|U i−1
C , U i−1

H ) = I(U iC [Ti]; (U iH , s)|U i−1
C , U i−1

H )

≤ I((U iC [Ti], {U iC [k]}k∈[Q], Ti); (U iH , s)|U i−1
C , U i−1

H )

(a)
= I((U iC [1], . . . , U iC [Q], Ti); (U iH , s)|U i−1

C , U i−1
H )

(b)
=

Q∑
j=1

I(U iC [j]; (U iH , s)|U i−1
C , U i−1

H , {U iC [k]}k∈[j−1])

+ I(Ti; (U iH , s)|U i−1
C , U i−1

H , {U iC [k]}k∈[Q])

(c)

≤ H(Ti) ≤ logQ.

Here, (a) follows since U iC [Ti] is determined by {U iC [k]}k∈[Q] and Ti; (b) follows by chain rule; and (c) follows
from the above observation and since Ti ∈ [Q]. Thus, I(U iC ; s|U i−1

H , U i−1
C ) ≤ I(U iC ; (U iH , s)|U i−1

H , U i−1
C ) ≤

logQ. Moreover, since in the real world, the distribution of UrH coincides with the distribution of UrC with
switched roles, we have that

I(U iH ; (U iC , s)|U i−1
H , U i−1

C ) . logQ.

Therefore, by the chain rule,

I(U iH ; s|U iC , U i−1
H ) ≤ I(U iH ; (U iC , s)|U i−1

H , U i−1
C ) . logQ.

Putting everything together, we obtain

m ∼ H(s) = H(s|u, UrH , UrC) + I(u; s|UrC , UrH)

+
∑
i∈[r]

(
I(U iH ; s|U iC , U i−1

H ) + I(U iC ; s|U i−1
H , U i−1

C )
)

= I(u; s|UrC , UrH) +O(r · logQ)

≤ H(u) +O(r · logQ)

= n+O(r · log λ).

5.9 One-Round Unbiased Sampling for any Distribution
In this section, we present our construction for one-round fully-secure sampling from an arbitrary (efficient)
distribution. We previously overviewed this construction in Section 5.2.3, and invite the reader to review
the basic definitions in Section 5.3.1, Section 5.3.4, and Section 5.3.5. We begin by precisely specifying the
sampling functionality, after which we give our protocol, and finally prove a security theorem.
Functionality 5.9.1. FD. Distributed Sampling
Initialisation: On receiving init from all parties, the functionality activates.

Sample: On receiving (sample, sid) from all parties, the functionality samples R $← D(1λ) and outputs
(sampled, sid, R) to all parties.

Protocol 5.9.2. One-round unbiased sampling protocol

Let D(1λ) be an efficient distribution. We consider the following algorithms.

• D̃(1λ)

1. K
$← {0, 1}λ
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2. S $← iO(1λ,P[K]) (see Program 5.9.3)
3. Output S

• D̃′(1λ, R̂)

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. S $← iO(1λ,P ′[K, ŝ, R̂]) (see Program 5.9.4)
4. Output S and ŝ

Let DS = (Setup,Gen,Sample,SimSetup,SimGen,Trap) be an indistinguishability-preserving distributed
sampler with unstructured CRS for the distributions (D̃, D̃′) [AWZ23, Section 5.2].

Initialisation: The parties call FnCoin and receive the distributed sampler CRS crs.

Sample: On input (sample, sid) from the environment, each party Pi performs the following operations:

1. Ui $← DS.Gen(1λ, sid, i, crs).

2. Broadcast Ui and receive (Uj)j 6=i from the other parties.

3. S ← DS.Sample(U1, . . . , Un, crs).

4. Call FnCoin to receive s.

5. Output (sampled, sid, S(s)).

Program 5.9.3. P[K]

Hard-Coded: Puncturable PRF key K

Input: A random string s ∈ {0, 1}n(λ)

1. r ← F (K, s)

2. R← D(1λ; r)

3. Output R

Program 5.9.4. P ′[K, ŝ, R̂]

Hard-Coded: Puncturable PRF key K

Input: A random string s ∈ {0, 1}n(λ)

1. r ← F (K, s)

2. R← D(1λ; r)

3. If s = ŝ, output R̂, otherwise, output R.

The following theorem essentially formalizes Theorem 5.2.7.
Theorem 5.9.5. Let D be an efficient distribution and let n = Θ(λ). Assume the existence of
indistinguishability-preserving distributed samplers with unstructured CRS for the distributions (D̃, D̃′)
[AWZ23, Section 5.2], indistinguishability obfuscation, and injective length-doubling PRGs. It follows that
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protocol 5.9.2 UC-realizes the functionality FD against any malicious PPT adversary that statically cor-
rupts up to N − 1 parties, in the FnCoin-hybrid model. The round complexity of the protocol is one and the
amortised sampling complexity is one.

Proof. In this proof, we rely on the notation, definitions and theorems of [AWZ23, Section 5.2].
We consider simulator 5.9.6. We prove that no adversary can distinguish between the real protocol and

the interaction between this simulator and FD.
Simulator 5.9.6. SD. Distributed Sampling
Initialisation: When all the corrupted parties have sent init to FnCoin, the simulator initialises FD
on behalf of the corrupted parties and computes (crs, ζ)

$← DS.SimSetup(1λ). When the adversary calls
FnCoin, the simulator replies with crs.

Sample: Let sid be the session identity and let ι be the index of an honest party. Let H be the set of
honest players. The simulator performs the following operations:

1. Receive R̂ from the functionality.

2. ∀i ∈ H \ {ι} : Ui
$← DS.Gen(1λ, sid, i, crs)

3. (Uι, ξ)
$← DS.SimGen(1λ, sid, ι, ζ, R̂)

4. Send (Ui)i∈H to the adversary and receive (Ui)i 6∈H as a reply.

5. (S, ŝ)← DS.Trap(ξ, (Ui)i∈[N ]).

6. When the corrupted parties call FnCoin, provide ŝ.

We consider games 5.9.7 (see [AWZ23, Definition 6]) and 5.9.8 (see [AWZ23, Definition 9]).
Game 5.9.7. Game with Oracle Distribution (Ch0, D̃)

The challenger Ch0 interacts with the adversary and the oracle D̃. It performs the following operations:

1. send (sample, i) for every honest party Pi

2. wait for (sample, i) from every corrupted party Pi

3. provide the adversary with s
$← {0, 1}n(λ)

Game 5.9.8. Game with Trapdoored Oracle Distribution (Ch1, D̃′)

The challenger Ch1 interacts with the adversary and the oracle D̃′. It performs the following operations:

1. R̂ $← D(1λ)

2. send (sample, i) for every honest party Pi

3. provide aux′ := R̂ to the oracle

4. wait for (sample, i) from every corrupted party Pi

5. If Ch1 receives a trapdoor ŝ from the oracle, it forwards it to the adversary. Otherwise, Ch1 provides
the adversary with s

$← {0, 1}n(λ).

We observe that if we compile (Ch0, D̃) using the indistinguishability preserving distributed sampler,
the view of the adversary becomes as in protocol 5.9.2 (see [AWZ23, Definition 7]). If instead we compile
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the trapdoored game (Ch1, D̃′) (see [AWZ23, Definition 12]), the view of the adversary becomes as in the
interaction between FD and SD (see Functionality 5.9.1 and Simulator 5.9.6). Our goal is to show that such
views are indistinguishable. Observe that if (Ch0, D̃) and (Ch1, D̃′) satisfy the conditions necessary to apply
indistinguishability-preserving distributed samplers, we are done [AWZ23, Definition 14]. We therefore have
to verify the following properties:

• D̃′ is a trapdoored distribution for D̃ (see [AWZ23, Definition 8]).

• (Ch1, D̃′) satisfies trapdoor security (see [AWZ23, Definition 10]).

• (Ch0, D̃) and (Ch1, D̃′) are chosen-sample indistinguishable (see [AWZ23, Definition 13]).

First property. We start by showing that D̃′ is a trapdoored distribution for D̃ (see [AWZ23, Definition
8]). We do it by means of a series of indistinguishable hybrids. Let R̂ be the auxiliary information given to
D̃′.

Hybrid H0. This hybrid corresponds to the distribution D̃

1. K
$← {0, 1}λ

2. S $← iO(1λ,P[K]) (see Program 5.9.3)

3. Output S

Hybrid H1. Let G : {0, 1}n(λ) → {0, 1}2n(λ) be an injective PRG. In this hybrid, we modify the obfuscated
program S as follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. r̂ ← F (K, ŝ)

4. K∗ ← Punct(K, ŝ)

5. R′ ← D(1λ; r̂)

6. ŵ ← G(ŝ)

7. S $← iO(1λ,P1[K
∗, ŵ, R′]) (see Program 5.9.9)

8. Output S

Thanks to the injectivity of G and the correctness of the puncturable PRF, the input-output behaviour of
S remains the same as in H0. Therefore, the two hybrids are indistinguishable due to the security of iO.

Program 5.9.9. P1[K
∗, ŵ, R′]

Hard-Coded: Puncturable PRF key K∗, the string ŵ and sample R′. Input: A random string

s ∈ {0, 1}n(λ)

1. w ← G(s)

2. If w = ŵ, output R′

3. r ← F (K∗, s)

4. R← D(1λ; r)
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5. Output R

Hybrid H2. In this hybrid, we modify the obfuscated program S as follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. K∗ ← Punct(K, ŝ)

4. R′ $← D(1λ)

5. ŵ ← G(ŝ)

6. S $← iO(1λ,P1[K
∗, ŵ, R′]) (see Program 5.9.9)

7. Output S

H1 and H2 are indistinguishable thanks to the security of the puncturable PRF F .

Hybrid H3. In this hybrid, we modify the program P as follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. R′ $← D(1λ)

4. ŵ ← G(ŝ)

5. S $← iO(1λ,P1[K, ŵ, R′]) (see Program 5.9.9)

6. Output S

Notice that the key hardcoded in S is not punctured anymore. The input-output behaviour of S has not
changed due to the correctness of the puncturable PRF, so, H2 and H3 are indistinguishable thanks to the
security of iO.

Hybrid H4. In this hybrid, we modify the obfuscated program S as follows.

1. K
$← {0, 1}λ

2. R′ $← D(1λ)

3. ŵ
$← {0, 1}2n(λ)

4. S $← iO(1λ,P1[K, ŵ, R′]) (see Program 5.9.9)

5. Output S

H4 is indistinguishable from H3 thanks to the security of the PRG G.

Hybrid H5. In this hybrid, we modify the obfuscated program S as follows.

1. K
$← {0, 1}λ

2. ŵ
$← {0, 1}2n(λ)

3. S $← iO(1λ,P1[K, ŵ, R̂]) (see Program 5.9.9)
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4. Output S

With overwhelming probability, ŵ does not lie in the image of the PRG G, therefore, the input-output
behaviour of S in H5 and H4 remains the same. The two hybrids are therefore indistinguishable due to the
security of iO.

Hybrid H6. In this hybrid, we modify the obfuscated program S as follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. ŵ ← G(ŝ)

4. S $← iO(1λ,P1[K, ŵ, R̂]) (see Program 5.9.9)

5. Output S

H6 is indistinguishable from the previous one by the security of the PRG G.

Hybrid H7. In this hybrid, we modify the obfuscated program S as follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. S $← iO(1λ,P ′[K, ŝ, R̂]) (see Program 5.9.4)

4. Output S

Thanks to the injectivity of G, the input-output behaviour of S remains the same as in H6. Therefore, the
two hybrids are indistinguishable due to the security of iO. Notice that the distribution of S in H7 is the
same if it was produced by D̃′(1λ, R̂).

Second property. We show that (Ch1, D̃′) satisfies trapdoor security (see [AWZ23, Definition 10]). We
proceed again by means of series of indistinguishable hybrids.

Hybrid H0. This hybrid corresponds to the trapdoor game in which the oracle does not provide the
trapdoor ŝ to Ch1. In particular, the view of the adversary consists of pair (S, s) generated as follows:

1. R̂ $← D(1λ)

2. ŝ
$← {0, 1}n(λ)

3. K
$← {0, 1}λ

4. S $← iO(1λ,P ′[K, ŝ, R̂]) (see Program 5.9.4)

5. s
$← {0, 1}n(λ)

6. Provide the adversary with S and s

Hybrid H1. In this hybrid, we modify the distribution of the obfuscated program S given to the adversary.
In particular, we puncture the key K in position ŝ. The input-output behaviour of S remains the same, so
Hybrid 0 and Hybrid 1 are indistinguishable thanks to iO. Formally, we generate the pair (S, s) as follows.

1. R̂ $← D(1λ)
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2. ŝ
$← {0, 1}n(λ)

3. K
$← {0, 1}λ

4. K∗ ← Punct(K, ŝ)

5. S $← iO(1λ,P ′[K∗, ŝ, R̂]) (see Program 5.9.4)

6. s
$← {0, 1}n(λ)

7. Provide the adversary with S and s

Hybrid H2. In this hybrid, we modify again the distribution of the obfuscated program S given to the
adversary. In particular, we sample R̂ using the randomness produced by F (K, ŝ). H2 and H1 are in-
distinguishable thanks to the security of the puncturable PRF. Formally, we generate the pair (S, s) as
follows.

1. ŝ
$← {0, 1}n(λ)

2. K
$← {0, 1}λ

3. K∗ ← Punct(K, ŝ)

4. r̂ ← F (K, ŝ)

5. R̂← D(1λ; r̂)

6. S $← iO(1λ,P ′[K∗, ŝ, R̂]) (see Program 5.9.4)

7. s
$← {0, 1}n(λ)

8. Provide the adversary with S and s

Hybrid H3. In this hybrid, we modify the program: we puncture the key is position s and we hardcode
the relative output. The input-output behaviour of S remains unvaried, so, H3 and H2 are indistinguishable
thanks to the security of iO. Formally, we generate the pair (S, s) as follows.

1. K
$← {0, 1}λ

2. s
$← {0, 1}n(λ)

3. K∗ ← Punct(K, s)

4. r ← F (K, s)

5. R← D(1λ; r)

6. S $← iO(1λ,P ′[K∗, s, R]) (see Program 5.9.4)

7. Provide the adversary with S and s

Hybrid H4. In this hybrid, we sample R using true randomness instead of F (K, s). H4 and H3 are
indistinguishable thanks to the security of the puncturable PRF. Formally, we generate the pair (S, s) as
follows.

1. K
$← {0, 1}λ

2. s
$← {0, 1}n(λ)

3. K∗ ← Punct(K, s)
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4. R $← D(1λ)

5. S $← iO(1λ,P ′[K∗, s, R]) (see Program 5.9.4)

6. Provide the adversary with S and s

Hybrid H5. In this hybrid, we modify the obfuscated program S. In particular, we hardcode K instead of
K∗. The input-output behaviour of S remains unvaried, so, H5 and H4 5 are indistinguishable thanks to
the security of iO. Formally, we generate the pair (S, s) as follows.

1. K
$← {0, 1}λ

2. s
$← {0, 1}n(λ)

3. R $← D(1λ)

4. S $← iO(1λ,P ′[K, s, R]) (see Program 5.9.4)

5. Provide the adversary with S and s

Observe that the view of the adversary in H5 is identical to the trapdoored game in the case in which the
trapdoor ŝ is provided to the challenger Ch1.

Third property. It is straightforward to see that (Ch0, D̃) and (Ch1, D̃′) are chosen-sample indistinguish-
able (see [AWZ23, Definition 13]). Indeed, the view of te adversary in the two worlds are identical except for
the fact that, in one case, the oracle provides the adversary with an obfuscated program S generated using
D̃(1λ). In the other case, S is generated using D̃′(1λ, R̂) for a random R̂

$← D(1λ). No information about
the trapdoor generated by D̃′(1λ, R̂) is provided. Since D̃′ is a trapdoored distribution for D̃, the two worlds
are computationally indistinguishable. This ends the proof.
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