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Abstract

This thesis presents a theoretical analysis of round complexity in cryptographic sampling protocols. We study
the following problem: how can n participants agree on a random sample from the distribution D without
anybody knowing any secret information hidden in the chosen sample? How many rounds of interactions
are needed in any such protocol? Which assumptions are required?

These questions are particularly interesting in the context of multiparty computation (MPC) due to the
extensive reliance (often unavoidable) on trusted setups such as common reference strings (CRSs). These are
samples from known distributions made public before the beginning of the protocol. Security proofs often
require CRSs to hide trapdoors. However, if these trapdoors get leaked, security is often fatally compromised.
Since trusted setups are inherently single points of failure, it is desirable to generate CRSs in a distributed
fashion using MPC protocols: as long as at least one of the participants remains honest, any trapdoor hidden
in the CRS is guaranteed to remain secret.

Previous research (Garg et al. TCC ’14) had shown that, in the setting of semi-honest security with
dishonest majority, any functionality can be implemented in two rounds. In this thesis, we show that, using
strong primitives such as indistinguishability obfuscation (i0), it is possible to build one-round sampling
protocols. We call these constructions distributed samplers. We show that these protocols can be used to
securely generate large amounts of correlated randomness with sublinear communication in a single round.

We study different ways to upgrade our semi-honest construction to active security. First, we try to
circumvent Cleve’s impossibility (STOC ’86) by allowing the adversary limited influence on the output of
the protocol: we consider the functionality .FlA)Cti"e that proposes a polynomial number of different outputs
to the adversary, letting it choose its favourite one (.7-'1A)Cti"e can still be used to generate CRSs). We show
how to implement FA"® in one round by relying on a programmable random oracle.

In subsequent work, we show that random oracles are necessary: any actively secure distributed samplers
implementing FA"e needs to rely on a CRS that is non-reusable, as large as a sample from D and structured
(unless D is an obliviously samplable distribution). This suggests that, without random oracles, simulation-
based, actively secure distributed samplers provide no advantage over trusted dealers.

We get around this impossibility by proposing new game-based definitions for actively secure distributed
samplers. Hardness-preserving distributed samplers allow the removal of CRSs from MPC protocols preserv-
ing at the same time the hardness of search problems. Indistinguishability-preserving distributed samplers, on
the other hand, substitute the trusted setup while preserving the functionality, however, the protocol needs
to satisfy particular conditions. We show how to build distributed samplers with the defined properties by
relying on extremely lossy functions, the subexponential security of iO and other primitives.

Next, in the context of active security with dishonest majority, we study the feasibility of protocols
producing unbiased samples with guaranteed output: to circumvent Cleve’s impossibility, we assume the
existence of an auxiliary functionality that, upon invocation, publishes a random , short k-bit string. We first
study the question when D is the uniform distribution over {0, 1}"* where m > k. This problem is called coin
tossing extension (CTE) (Bellare et al. PODC ’96). We show the existence of O(1)-round CTE constructions
producing an arbitrarily large quantity of unbiased randomness based on various assumptions (OWFs, DDH,
QR and DCR, class groups). Our most important result is an LWE-based, one-round, UC-secure, n-party
CTE protocol withstanding adaptive corruption. The protocol can be viewed as an explainable randomness
extractor. By relying on distributed samplers and the auxiliary functionality, we build one-round unbiased
sampling protocols for any distribution. Finally, we present a lower bound for statistically secure CTE with
black-box simulation: an R-round protocol can generate at most k + R - O(log A) bits of randomness.
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Resumé

Denne afhandling praesenterer en teoretisk analyse af runde kompleksiteten for kryptografiske sampling
protokoller. Vi studerer fglgende problem: hvordan kan n deltagere blive enige om et udfald fra en fordeling
D, uden at nogen af dem kender den hemmelige information skjult i det udfald? Hvor mange runder kraever
sadan en protokol? Og hvilke antagelser er pakraevede?

Disse spgrgsmal er af speciel interesse i konteksten af sikre flerpartsberegninger (fork. MPC fra det
engelske multiparty computation) grundet den udbredte (og tit uundgéelige) atheengighed pa betroet op-
setning, s som de sdkaldte common reference strings (CRSer). CRSer er uddrag fra kendte fordelinger
som offentligggres fgr starten af protokollen. Sikkerhedsbeviser kraever ofte at CRSer gemmer pa en faldlem.
Hvis en faldlem bliver lackket, bliver sikkerhed dog ofte fatalt kompromitteret. Da betroet opssetning udger
et “single point of failure”, er det gnskeligt at generere CRSer pa en distribueret manér ved brug af MPC-
protokoller: sa leenge mindst en af parterne forbliver eerlig, vil enhver faldlem i CRSen forblive hemmelig.

Tidligere resultater (Garg et al. TCC ’14) har vist at enhver funktionalitet kan opnd semi-honest sikker-
hed i to runder med et ueerligt flertal. I denne afhandling vil vi vise at det er muligt at bygge sampling
protokoller i en enkelt runde ved brug af steerke primitiver, som indistinguishability obfuscation (i0). Vi
kalder disse konstruktioner distributed samplers. Vi viser at disse protokoller kan bruges til at generere store
mangder korreleret tilfseldighed med sublineszer kommunikation i en enkelt runde.

Vi udforsker forskellige méder at opgradere vores konstruktion fra semi-honest til aktiv sikkerhed. Fgrst
prover vi at omgd Cleve’s umulighedsresultat (STOC ’86) ved at give fjenden begreenset indflydelse pa
protokollens output: vi betragter funktionaliteten F5ct'® som tilbyder fjenden et polynomielt antal udfald,
og lader den velge sit foretrukken resultat (.Féaive kan stadig bruges til at producere CRSer). Vi viser
hvordan fé“i"e kan implementeres I en runde ved brug af et programmable random oracle.

I efterfglgende arbejde viser vi at random oracles er ngdvendige: enhver distributed sampler som imple-
menterer Fptve og opnér aktiv sikkerhed skall bruge en CRS som ikke er genanvendelig med stgrrelsen pa
et udfald fra D og er struktureret (medmindre D er en obliviously samplable fordeling). Dette foreslar at,
uden random oracles, tilbyder simulation-based aktivt sikre distributed samplere ingen fordel over en betroet
fordeler.

Vi undgar denne umulighed ved at foresla nye spil-baserede definitioner for aktivt sikre distributed sam-
plers. Hardness-preserving distributed samplers tillader at fjerne CRSer fra MPC protokoller mens svaerheden
af sgge problemer vedligeholdes. Indistinguishability-preserving distributed samplers erstatter derimod be-
troet opseetning mens funktionaliteten vedligeholdes, dette kreever dog at den underliggende protokol lever op
til visse krav. Vi viser hvordan distributed samplers med de definerede egenskaber kan bygges ved extremely
lossy functions, subeksponentiel security of iO og andre primitiver.

Neest, ser vi pa gennemforligheden af protokoller der producerer udfald uden bias med garanteret oputput,
i konteksten af aktiv sikkerhed med et ueerligt flertal: for at omgéa Cleve’s umulighedsresultat, antager vi
eksistensen af en hjzelper funktionalitet, som udgiver en tilfaeldig kort k-bit streng nar den bliver kaldt. Forst
betragter vi tilfseldet hvor D er den uniforme fordeling over {0,1}™ hvor m > k. Dette problem er kendt
som coin tossing extension (CTE) (Bellare et al. PODC ’96). Vi viser at O(1)-runde CTE konstruktioner
der producere arbitreert store maengder tilfeeldighed eksisterer under forskellige antagelser (OWFer, DDH,
QR and DCR, class groups). Vores vigtigeste resultat er en LWE-baseret, enkelt-runde, UC-sikker, n-
parts CTE prokotol, der modstar adaptive korruptioner. Ved at athsenge pa distributed samplers og hjeelper
funktionaliteten bygger vi et-rundes unbiased sampling protokoller for enhver fordeling. Til sidst praesenterer
vi et lower bound for statistisk sikker CTE med black-box simulering: en R-rundes protokol kan hgjest
genereret k + R - O(log \) bits af tilfeeldighed.
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How to read this thesis

This thesis is split in two parts. Part I presents the research question we study, explaining its importance
and embedding it into a broader cryptographic perspective. We also give a summary of the main results,
presenting them in relation to other works produced by the community. Part I terminates with an overview
of the techniques and mathematical arguments used in our research.

Part 1T lists the full versions of four manuscripts (three of them currently published in major TACR
conferences). These are where the results in this thesis were first presented and formalised. Except for minor
adjustments (summarised in Section 1.1.1), these manuscripts have not been edited and can be found online
on the TACR ePrint Archive.

All readers are invited to start from Chapter 1 and refer to the manuscripts when additional details or
more formal argumentations are desired (note that, sometimes, the notation in Chapter 1 differs from the one
in the manuscripts in Part IT). Inexperienced readers may struggle to switch from Section 1.1 to Section 1.1.1
due to the increasing use of cryptographic jargon. For these cases, in Section 1.2.1, the thesis provides a
short, informal discussion of notation, preliminaries and basic cryptographic notions and techniques. If this
would still not suffice, we recommend checking Oded Goldreich’s Foundations of Cryptography’.

1Goldreich O. Foundations of Cryptography. Cambridge University Press; 2001.
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Chapter 1

Sampling Common Randomness in a
Single Round

1.1 The Struggle for Secure Randomness

Randomness lies at the core of cryptography. Without this, basic concepts such as privacy and authentication
would be unachievable. Encryption can be viewed as the art of hiding messages using randomness (taking
the form of cryptographic keys): an encryptor merges a message and randomness into a tight, inseparable
union, a new unpredictable object called a ciphertext. In this way, randomness protects the privacy of the
message from any curious observer receiving the ciphertext: recovering the message is possible only if we
possess (partial) knowledge of the randomness used by the encryptor. Authentication, on the other hand,
can be viewed as the art of using randomness (again, taking the form of a cryptographic key) to design
codes! whose elements are hard to find: we can discover codewords only if we possess (partial) knowledge of
the randomness that produced the code.

Due to this tight and intrinsic connection to the world of probability and the fact that randomness
is often non-reusable, cryptographic primitives make use of large amounts of randomness in the form of
long sequences of uniform, independent, binary random variables. Generating true randomness, however,
comes at a price: commonly, using specialised hardware that measures local physical phenomena subject to
persistent, unpredictable variations. The randomness produced in this way is, however, raw: the outcomes of
the measurements are often far from the independent, uniformly distributed bits required by cryptographic
primitives. The data therefore undergoes further processing using algorithms called randomness extractors,
which condense the unpredictability of the measurements into short, uniformly random strings of bits.
The cost of this is high enough to motivate researchers into finding new, more efficient ways of generating
randomness. This led to the introduction of cryptographic primitives such as pseudorandom generators
(PRGs) and pseudorandom functions (PRFs): a short, truly random string of bits (called a seed or key) is
deterministically expanded at a low price into a longer pseudo-random string behaving at all effects as if it
was truly random?.

Common random strings and common reference strings. Although PRGs and PRFs are a significant
step forward in the study of randomness generation, they do not provide a definitive solution to the problem:
in cryptography and, in particular, in multiparty computation (MPC), randomness assumes a large variety
of shapes and only a small part of them can be reduced to individual entities locally sampling uniformly
random strings independently of their external environment. Among the most common forms are common
random strings and common reference strings (CRS). These consist of unpredictable binary strings made
public at an unspecified point in time, before all participants (often called parties or players) start running

1A code consists of a subsets of binary strings of a given length.
2No further information about the seed or key must be revealed.
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their cryptographic protocols. In the case of common random strings, the CRS is unstructured: it consists
of a uniformly random string of bits of a set length. Common reference strings are, on the other hand,
structured: they are described by arbitrary distributions. Typical examples are large RSA moduli [RSAT78],
i.e. integers obtained by multiplying two random prime numbers of a set bit-length, or KZG-like CRSs
[KZG10], i.e. tuples (g, g%, g”‘2, ...,9%") where g is a high order element in a multiplicative group G and «
is an integer uniformly sampled over a finite interval.

CRSs are fundamental in cryptographic protocols, especially in the context of malicious security in the
dishonest majority case®: without them, rigorous, modular and well-established security notions such as
universal composability [Can01] would often be unachievable? [CKLO03], and the list of unknown impossi-
bilities keeps growing if we consider stronger security definitions such as adaptive corruption [IKOS10]. In
simulation-based security, CRSs are often used to backdoor the protocol execution, allowing an algorithm
called simulator to better understand and control how misbehaving participants act: we say that the proto-
col is secure if the simulator (essentially) always manages to manipulate all malicious parties into respecting
the “ideal” behaviour of the computation without being noticed®. In other words, since the behaviour of the
simulator goes unnoticed and the misbehaving parties (essentially) always fail at disrupting the protocol,
it must be that the attacks of the malicious parties (essentially) always fail even when the simulator is not
active. To summarise, CRSs and the backdoors (or trapdoors) hidden in them have allowed us to study
secure computations in a modular and scalable way for many years, sensibly contributing to the development
of cryptography in the academic and the real world. However, a natural question arises:

What happens if the CRS backdoor ends up in the wrong hands?

This usually is fatal for protocol security: backdoors often grant full control to the protocol execution.
Malicious participants would be able to learn the inputs of all honest players and deviate the protocol
execution into providing wrong outputs. Even worse, oftentimes the attacks go undetected as the simulator
was. In other words, security is often a castle built on the foundation that no ill-willed entity is able to put
its hands on the CRS trapdoor. When the foundation turns out to be wrong, the fortress crumbles.

Therefore, how do we generate CRSs in a secure way?

In the world of theoretical cryptography, the generation of a CRS is almost always entrusted to an idealised
entity called the trusted dealer or the trusted third party (TTP): an honest-by-definition entity that generates
the CRS sampling it according to the expected distribution, delivers it to all protocol participants and keeps
all additional information including any hidden backdoor secret, abstaining from using it in any context.
The issue is that this entity is very likely to not exist in the real world: aside from the fact that the common
good-and-bad dichotomy may be just a illusory human construct, we live in a world where a part of the
society believes (at conscious or unconscious level) that “maximising-personal-interests” leads to a good
approximation of “collective-good”. So, what happens if a real naive-but-trusted dealer starts to use CRS
trapdoors for (perhaps perceived-as-good) personal interests? We have seen this many times: consider the
Snowden files or every time we hear about new mass-surveillance programs advertised as solutions against
criminality. This is especially scary if we consider that in these examples the trusted-but-not-so-trustworthy
dealer were public agencies and autocratic winds are currently on the rise all over the globe. On the other
hand, we cannot expect private companies or individuals to behave any more ethically. On the contrary,
due to the larger freedom they benefit from, the more centralised internal organisation and the limitedness
of controls, the misuse of CRS backdoors is only more likely to go unnoticed. Finally, even if a completely
honest entity existed, what would happen in case of any security breach leading to the theft of its CRS

3Malicious security refers to protocols that are secure even if a subset of participants deviates from the expected course of
the computation and starts misbehaving, possibly colluding with other participants. Dishonest majority refers to protocols that
are secure even if more than half of the participants misbehave.

4The universal composability model (UC) is an expressive security model introduced by Canetti. Unlike other common
models such as standalone security, UC-secure protocols are guaranteed to be secure even if they are run in parallel with other
computations. This is an extremely desirable property.

5The simulator achieves this by tampering with all information received by the misbehaving participants and by reading
and modifying the communications they send.



trapdoors? This kind of attacks are becoming more and more common and they are especially concerning
due to their growing warfare usage.

So, how can we generate CRSs without relying on a single dealer?

CRSs cannot be generated using PRGs and PRFs. First of all, the outputs of PRGs and PRFs are somewhat
unstructured, whereas, as we have seen, CRSs are often structured. Even if we are dealing with common
random strings, PRGs and PRFs do not constitute a solution. In the first place, it is unclear how to generate
the public seed we would like to expand, secondly, even if we were able to magically obtain it, the output of a
PRG expansion would not look random: these primitives guarantee security only as long as the seed remains
secret (a similar argument applies to the case of PRFs). When the CRS is unstructured, applications often
rely on idealised settings such as the (programmable) random oracle model (RO)® or on heuristics such as
using a subsequence of digits of 7. Although these are considerably better solutions, they are also far from
perfect: the digits of m are clearly not random, how would we be able to compute them otherwise? Random
oracles do not exist in the real world, so they are often heuristically instantiated by relying on particular
families of (usually keyless) hash functions: Who samples the key of the hash function if it is not keyless?
Who guarantees that the hash function and its key are not backdoored? Finally, if the hash function is
keyless, as for the digits of 7w, we end up with a non-random CRS: we have a deterministic algorithm that
allows to compute it.

Generating structured CRSs is an even harder task. As for PRGs and PRFs, the digits of m# and hash
functions lead to somewhat unstructured strings of bits. Moreover, often we cannot boil down the problem
to generating an unstructured random string and then using the latter as randomness for the distribution
describing the structured reference string. Indeed, revealing the randomness that produced the CRS often
leaks the hidden backdoor. For example, in the case of RSA moduli, the randomness used by the sampling
procedure would immediately provide the factorisation of the output; in the case of a KZG-like CRS, the
randomness would leak the value of «. If the randomness is kept secret, computing the factorisation (or the
value of «) from the CRS is considered an infeasible task. For this reason (and also their particularly nice
algebraic properties), they have been extensively used as CRS trapdoors.

Multiparty computation. A possible solution to the problems described above is multiparty computation:
instead of delegating the generation of CRSs to trusted, perhaps-trustworthy entities, the CRS is sampled by
a cryptographic protocol between a larger number of participants, possibly including (some of) the parties
that will later on make use of produced output. In this way, it is possible to generate CRSs that are secure
even if all but one of the participants of the sampling protocol misbehave: as long as this condition is
satisfied, all backdoors will remain secret. To summarise, we do not put all eggs in one basket.

This solution raises, however, a new question.

How can we design sampling protocols that gquarantee the desired level of security at a minimal cost?

This is a particularly important question also in light of the fact that some CRSs in MPC constructions are
non-reusable: for each protocol execution, the parties would need to rerun the sampling protocol to obtain
a fresh CRS. While the multiparty generation of unstructured CRSs can be easily handled in a commit-
then-reveal fashion, the situation for structured CRSs if usually much more involved. Practical solutions
are often complex, require several rounds of interaction, high communication and expensive computations.
Typical examples of this can be drawn from the vast literature on secure sampling of RSA moduli [BF97,
FMY98, PS98, Gil99, HMRT12, FLOP18, CCD*20, dMRT21, CHI"21]. Tt is true that the cost of sampling
protocols can often be amortised on the long run, however, this argument is based on the assumption that the
parties need to perform intense computations in the first place. This is often true for the kind of commercial
applications of MPC we often imagine: a small group of servers around the world is delegated the majority
of (secure) computations on earth. What if we instead consider more decentralised applications? What if
the parties are just end-users, normal people around the globe engaged in a network of secure information

6A random oracle consists of an entity which can be accessed from any place and at any time. On input any query, the
oracle responds with a random binary string of set length. Repeated queries are answered consistently.



exchange? We cannot assume that people are interested in performing intense computations with the same
subsets of players on an every-day scale and on the long run. Maybe they make use of MPC protocol
rarely and every time with a different subset of participants! What if none of the end-users are happy with
just relying on the CRS produced by some external entity they have no control upon? They would need
to regenerate the CRS at each occasion! To summarise my point, expensive and slow sampling protocols
hinder the responsiveness, the fluidity, the flexibility of secure computations: before the parties can even
start computing their output, they need to get involved in a slow and costly setup protocol. This burdens
the democracy of secure computation and information over the Internet, which is then inherited in the real
world (and inequalities seem to feed on pre-existing inequalities).

The works presented in this thesis try to make a small step forward in understanding the theoretical
efficiency of sampling protocols, focusing especially on their round complexity relative to their security
guarantees. Before our research was carried out, the best known solutions were drawn from the study of
2-round MPC [GGHR14, MW16, GS17, BL18, GS18b, BL.20], which trivially implies the existence of 2-round
semi-honest sampling of any CRS. The starting point of the thesis will therefore be the following question:

Is 1T POSSIBLE TO DESIGN ONE-ROUND SAMPLING PROTOCOLS?

Sampling correlated randomness. Another form of randomness commonly used in cryptography is cor-
related randomness: each participant of the MPC protocol is provided with a secret random value correlated
to those received by the other parties. Locally sampled randomness and CRSs can be viewed as extreme
cases of correlated randomness: the first one corresponds to randomness with no correlation at all (the
samples received by the parties are all independent), the other one to randomness that is fully correlated
(the sample received by any party fully determines the samples received by everybody else).

Correlated randomness is not only fundamental in one-time trusted setups such as public-key infrastruc-
tures (PKI)”, it has also become extremely popular in MPC with preprocessing [Bea92, BDOZ11, DPSZ12,
NNOB12], leading the way to the rapid growth of multiparty computation in the last decade. These pro-
tocols are composed of two phases: an input-dependent (usually lightweight) secure computation requiring
correlated randomness (usually in large amounts) and a (usually expensive) preprocessing phase where the
correlated randomness is generated in a distributed way. The former is often called the online phase, the
latter is referred as the offline phase. The type of correlated randomness required by these protocols is
usually limited in its usage: it can be used at most once. Furthermore, in many cases, MPC protocols
requires amounts of correlated randomness scaling proportionally to the size of the circuits describing the
computation (e.g. one tuple of correlated material per multiplication gate). This grows the amounts of nec-
essary preprocessed material to significant levels. For this reason, production and storage of the correlated
material are often the bottleneck of MPC protocols with preprocessing, increasing the urge for new, more
efficient solutions.

Of course, if a trusted dealer existed in the real world, we could delegate it with the task of generating
and distributing correlated randomness. This, however, not only leads to the same problems we discussed
for CRSs, it also requires significant effort at the dealer side, requiring it to constantly be online, ready to
answer the relentless requests for more correlated material from the protocol participants. Once again, it
is therefore fundamental to rely on MPC protocols that guarantee the security of the generated correlated
material even if a subset of participants misbehaves.

The pattern we saw for structured CRSs repeats again: known MPC protocols for correlated randomness
generation are often complex, require multiple rounds of interaction and high costs, both in terms of compu-
tations and communication [DPSZ12, KOS16, KPR18]. This is not only problematic in terms of amortised
efficiency, it also affects negatively the responsiveness, the fluidity, the flexibility, the democracy of MPC
protocols: before the parties can even start to compute their output, they need to get involved in an slow
and costly setup protocol.

A recent break-through on the topic was the introduction of pseudorandom correlation generators (PCGs)
and pseudorandom correlation functions (PCFs) [BCG'19b, BCGT19a, BCGT20b, BCG'20a]: these are

"In a PKI, at an unspecified point in time, before the beginning of the protocol execution, the participants are provided
with (possibly correlated) private key material.



primitives describing how to securely obtain large amounts of correlated material by locally expanding small
correlated seeds given to the protocol participants. By relying on PCGs or PCFs it is possible to design
low-communication, low-storage offline phases for MPC protocols; computation and round complexity in
practical solutions remain, on the other hand, usually high. An exception are public-key PCFs: one-round
protocols that allow to produce large amounts of correlated randomness with sublinear communication in
the size of the outputs. At the time the works described in this thesis began, public-key PCFs were known
only for particular types of correlation, namely oblivious transfer (OT) and vector oblivious linear evaluation
(VOLE) [OSY21]. The second question we try to answer is therefore the following:

Is 1T POSSIBLE TO DESIGN PUBLIC-KEY PCFs FOR ANY CORRELATION?

1.1.1 A Summary of the Main Results

This thesis encompasses the results presented in four papers:

e Damiano Abram, Peter Scholl, Sophia Yakoubov. Distributed (Correlation) Samplers: How to Remove
a Trusted Dealer in One Round. (EUROCRYPT 2022) [ASY22a, ASY22D] (see §2)

o Damiano Abram, Maciej Obremski, Peter Scholl. On the (Im)possibility of Distributed Samplers:
Lower Bounds and Party-Dynamic Constructions. (Not yet published manuscript) [AOS23] (see §3)

e Damiano Abram, Brent Waters, Mark Zhandry. Security-Preserving Distributed Samplers: How to
Generate any CRS in One Round without Random Oracles. (CRYPTO 2023) [AWZ23a, AWZ23b] (see

§4)

e Damiano Abram, Jack Doerner, Yuval Ishai, Varun Narayanan. Constant-Round Simulation-Secure
Coin Tossing Extension with Guaranteed Output. (EUROCRYPT 2024) [ADIN24a, ADIN24b] (see §5)

The full versions of these works (available on the ePrint archive [epr]) have been listed in Part II of this
thesis after applying minor adaptations (such as change of format, moving security proofs and preliminaries
from the appendices to the main body and fixing references). Due to space constraints, some of the results
of [AOS23] and [AWZ23a] were not included in the thesis. In particular, the omitted sections concern the
study of unbounded universal samplers® [AOS23, Section 4], party-dynamic distributed samplers® [AOS23,
Section 5] and CRS-less NIZKs with security against uniform adversaries [AWZ23a, Sections 9-10]. At the
base of this choice is only the will to narrate a more concise and linear story about sampling randomness in
one round.

Sampling CRSs in one round: semi-honest security. Our story starts by studying one-round sam-
pling protocols in the easiest setting: semi-honest security'®. We consider a particular type of one-round
sampling protocols in which the output can be publicly derived from the transcript. We call this a distributed
sampler. More formally, a distributed sampler for a distribution D(1*) consists of a pair (Gen, Sample) where
Gen is an algorithm used by all parties to generate the message they send in the only round of interaction and

8 An unbounded universal sampler can be view as a cryptographic object that, on input the description of any distribution,
produces a sample without leaking any additional information. The construction is unbounded in the sense that there exists
no bound on the set of input distributions. In particular, the sampler can produce secure samples from distributions that are
arbitrarily bigger than the sampler itself.

9A party-dynamic distributed sampler consists of a one-round sampling protocol in which the set of participants is dynamic:
the messages exchanged in these one-round protocols are independent on the identities and the number of other players. This
gives rise to sampling protocols in which the participants do not need to be online: it is sufficient for them to publish a single
message on a bulletin board (e.g. blockchain). To generate a sample, it is sufficient to recover the messages published by an
arbitrary subset of trusted players without them having to return online. The output is secure as long as one of the trusted
parties behaves honestly.

10A semi-honest (or passive) protocol guarantees security only if all parties follow the protocol description. Notice that this
security notion is not trivial, as a protocol may leak problematic information (e.g. CRS trapdoors) even if all parties behave
honestly.



IDEAL FUNCTIONALITY FOR SEMI-HONEST DISTRIBUTED SAMPLERS Fp

On input Sample from all parties, compute R < D(1*) and output it to all participants and the
adversary.

Figure 1.1: Ideal functionality for semi-honest distributed samplers. The functionality remains unvaried in
the non-rushing semi-malicious case.

Sample is a deterministic procedure that, on input the exchanged messages, returns the output of the com-
putation. We formalise the security of semi-honest distributed samplers using a simulation-based definition:
we require the obtained protocol to implement the ideal functionality in Figure 1.1.

In [ASY22a], we studied semi-honest distributed samplers for any efficient distribution D(1*) and any
(polynomial) number of parties'!. We restricted our security analysis to PPT adversaries statically corrupting
any number of parties, but leaving at least one honest'?. We show that, in this setting, under strong
assumptions such as indistinguishability obfuscation (10) [BGIT01, GGH'13, JLS21, JLS22] and multi-key
fully homomorphic encryption (multi-key FHE) [LTV12, MW16, AJIM20], building distributed samplers is
always possible. Furthermore, the construction we provide remains secure even if the adversary is allowed
to maliciously choose the randomness of the corrupted players before the protocol execution starts (note: the
adversary is not allowed to use rushing). As for the semi-honest case, the corrupted players are still required
to follow the protocol. We call this stronger version of adversary non-rushing semi-malicious.

Theorem 1.1.1 (Informal version of Theorem 2.4.1). Let n(\) be a polynomial function in the security
parameter. Assume the existence of (polynomially secure®) iO and (polynomially secure) multi-key FHE.
Then, in the context of computational security, there exists an n-party non-rushing semi-malicious distributed
sampler for any efficient distribution D(1*) withstanding up to n — 1 static corruptions.

Sampling CRSs in one round: active security. The next setting we considered is active security (also
called malicious security). Semi-honest security and similarly non-rushing semi-malicious security are based
on strong assumptions: in the real world, it is implausible that corrupted players do not take full advantage
of their opportunities and keep following the protocol description. It is therefore natural to study the security
of distributed samplers in presence of maliciously (mis)behaving participants.

Unfortunately, we immediately run into an issue: due to a well-known result by Cleve [Cle86] on the
impossibility of coin tossing, the functionality Fp in Figure 1.1 cannot be implemented against active ad-
versaries in the dishonest majority setting (notice that when D is the uniform distribution over {0,1}, Fp
becomes the coin-tossing functionality). More in general, there exists a class of attacks that are inherent
to all one-round MPC protocols. An active adversary can always use rushing behaviour: as soon as the
honest parties speak, the adversary can rush to see their messages, choosing only at that point what to send
on behalf of the corrupted players (all of this happens in the same round). In particular, the adversary
can “grind” multiple choices of the corrupted messages, until it finds an output it likes. To summarise,
maliciously secure distributed sampler protocol inevitably allow (limited) influence to the adversary: the
adversary can try different (but polynomially many) protocol executions in its head (all of them with the
same of choice of honest messages) and choose the one that appreciates the most. To take this into account,
in the malicious setting, we modify the functionality Fp as in Figure 1.2. Notice that if we generate the
CRS of any secure MPC protocol using FactVé, the protocol remains still secure.

1 An efficient distribution consists of a distribution that is described by a polynomial-sized circuit mapping a sequence of
uniformly random bits into a sample.

12Static corruption requires the adversary to choose the set of corrupted players before the beginning of the protocol execution,
allowing no subsequent changes. If instead the adversary is free to corrupt the participants even after the protocol started
running, we talk about adaptive corruption.

13We use the term polynomial security as opposed to subexponential security. A primitive is subexponentially secure if there
exists a constant € > 0 such that, for every 0(2)‘E )-time probabilistic adversaries, the construction retains its security properties
with O(2‘>‘€) advantage. A primitive is polynomially secure if, for every PPT adversary, the advantage is negligible in .

8



IDEAL FUNCTIONALITY FOR ACTIVE DISTRIBUTED SAMPLERS JFpctve

Initialisation: On input Init from all parties set Q < 0. If all parties are honest, output R < D(1*).
Query: On input (Query, id) from the adversary where id is a not-yet-queried label, sample Rg < D(1*),
set @ + QU {(id, Rig)} and provide Ri4 to the adversary.

Output: On input (Output, Ei) from the adversary, retrieve the pair (.El, Rg) from Q. If there exists at
least one corrupted party, output R and halt.

Figure 1.2: Ideal functionality for active distributed samplers. The functionality remains unvaried in the
rushing semi-malicious case.

The study of active distributed samplers began in [ASY22a]. In the work, we proposed a compiler
capable of converting any one-round, inputless protocol with security against non-rushing semi-malicious
adversaries into a one-round maliciously secure protocol implementing (a slightly modified version of) the
same functionality. Such compiler, named anti-rusher, is build from (polynomially secure) iO and non-
interactive zero-knowledge (NIZK) in the programmable random oracle model. By applying the anti-rusher
compiler on the non-rushing semi-malicious distributed samplers of Theorem 1.1.1, we obtain the following
result.

Theorem 1.1.2 (Informal version of Theorem 2.5.3). Let n()\) be a polynomial function in the security
parameter. Assume the existence of (polynomially secure) iO and (polynomially secure) multi-key FHE and
(polynomially secure) NIZKs for NP. Then, in the context of computational security in the UC model with
programmable random oracle, there exists an n-party maliciously secure distributed sampler for any efficient
distribution D(1*) withstanding up to n — 1 static corruptions.

Active security and random oracles. The result in Theorem 1.1.2 suffers from an important disad-
vantage: it relies on a programmable random oracle. Random oracles are indeed an idealised model that
cannot be instantiated in the real world, and programmable random oracles are an even stronger flavour
of the setting. In [AOS23], we tried to answer the question of whether the functionality in Figure 1.2 can
be implemented without random oracles in the actively secure setting. To simplify the task we considered
also distributed samplers that rely on CRSs. At first this might seem strange: what is the point of using
distributed samplers to generate CRSs if the latter need CRSs too? We argue that if the CRSs they rely
upon is reusable or particularly easy to generate (for instance because short or unstructured), distributed
samplers of this type can still be interesting. At least for the case of universal composability (UC) [Can01],
we showed that none of this is possible. The lower-bound is based on the following result.

Theorem 1.1.3 (Informal version of Theorem 3.4.1). Suppose that there exists a active distributed sampler
for the distribution D(1*) withstanding any number of static corruptions in the UC model. Suppose that
the protocol relies on a CRS o, then the Shannon entropy'* of the output R conditioned on o is

H(R|o) = O(log A).

The theorem is essentially stating that the CRS ¢ almost determines the output of the distributed sampler.
This has three negative repercussions: the CRS is non-reusable (see Corollary 1.1.4), it cannot be short (see
Corollary 1.1.5) and it cannot be unstructured unless D(1*) was obliviously samplable to begin with (in
other words, there existed a way to deterministically convert public, uniformly random coins into a secure
sample from D. See Corollary 1.1.6). To summarise, without random oracles, actively secure distributed
samplers that implement the functionality FAt'® essentially provide no advantage over the trusted dealer
that generates a public sample from D(1*)!

Corollary 1.1.4 (Informal version of Corollary 3.4.2). Two executions of a UC-secure, active distributed
sampler reusing the same CRS produce the same output with inverse polynomial probability.

The conditional Shannon entropy H(R|o) measures how unpredictable R is once o is known.
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Corollary 1.1.5 (Informal version of Corollary 3.4.3). In a UC-secure active distributed sampler, the CRS
size is at least
|0'| > HYao(D) - O(log /\)a

where Hy,o(D) denotes the Yao entropy [Yao82] of the distribution D'°.

Corollary 1.1.6 (Informal version of Corollary 3.4.4). A UC-secure, active distributed sampler can have an
unstructured CRS if and only if the underlying distribution D(1%) is obliviously samplable, i.e., there exists
a way to generate secure samples from D using public random coins and no interaction.

All the results we described above were proved to hold for an even weaker class of attacks: rushing semi-
malicious adversaries, which are forced to follow the protocol instructions, but are allowed to maliciously
choose the randomness of the corrupted players after seeing the messages of the honest parties. This makes
our lower bounds even stronger.

Working around the impossibility: security-preserving distributed samplers. With the lower
bounds we just described, we abandoned all hopes of obtaining UC-secure, active distributed sampler in
the dishonest majority setting. In [AWZ23a], we tried to work around the impossibilities. After failing in
different security settings such as superpolynomial simulation, honest majority and standalone security, we
decided to try a different path: instead of aiming for simulation-security, we considered new game-based
definitions. This led to the introduction of two new notions: hardness-preserving distributed samplers and
indistinguishability-preserving distributed samplers.

Hardness-preserving distributed samplers. Hardness-preserving distributed samplers preserve the
hardness of search problems: suppose that retrieving a trapdoor T hidden in a sample R & D(1%) is
infeasible for all PPT adversaries. Then, if R is generated by executing a hardness-preserving distributed
sampler, allowing the adversary to maliciously control up to n — 1 parties, retrieving the trapdoor T remains
still infeasible. More in general, hardness-preserving distributed samplers can be used to remove CRSs from
MPC protocols while guaranteeing a weak form of security against active adversaries: all attacks that failed
with overwhelming probability against the protocol in the CRS model, still fail with overwhelming probability
even if the CRS is generated by an hardness-preserving distributed sampler (again the adversary is allowed
to control a proper subset of parties).

In [AWZ23a], we showed how to build a hardness-preserving distributed sampler (relying on a reusable,
unstructured A-bit CRS) from subexponentially secure iO, subexponentially secure multi-key FHE, extremely
lossy functions (ELFs) [Zhal6] and particular NIZKs we called almost-everywhere extractable. The latter
consist of witness-extractable NIZKs for which finding accepting proofs that make the extractor fail is partic-
ularly hard. Indeed, so hard that it is possible to apply the trick of [BCP14]'¢ to argue that the obfuscations
(using i0) of the following programs are indistinguishable despite the existence of differing inputs: both
programs receive an input and an almost everywhere extractable NIZK proving its welformedness. The
programs perform the same operations on the provided input conditioned on the successful verification of
the NIZK (in case of a failure, the programs output L). The second program, however, tries also to extract
the witness from the proof, outputting L in case of a failure.

Theorem 1.1.7 (Informal version of Theorem 4.8.1). Assume the existence of subexponentially secure iO,
subexponentially secure multi-key FHE, ELFs and almost everywhere extractable NIZKs for NP. Then,
there exists an n-party hardness-preserving distributed sampler for any efficient distribution D(1%).

Theorem 1.1.8 (Informal version of Theorem 4.4.6). Assume the existence of perfectly correct identity based
encryption (IBE), perfectly binding non-interactive commitments, subexponentially secure injective one-way

15The Yao entropy measures the degree to which the samples of a distribution can be efficiently compressed without losing
information. In other words, Hy,o (D) describe the size of the most compact encoding of the samples produced by D.

161n [BCP14], Boyle, Chung and Pass show that if we can distinguish between two obfuscated program having a polynomial
number of differing inputs, then we can find one of these differing inputs in polynomial time. The strategy is to reobfuscate
the programs fixing some of their input bits and perform some sort of binary search: if the resulting obfuscations are still
distinguishable, it must be that the input bits we fixed are consistent with at least one differing input.
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functions (OWFs) and perfectly sound witness-indistinguishable proofs for NP (NIWIs). Then, there exist
almost everywhere extractable NIZKs for NP.

Indistinguishability-preserving distributed samplers. Indistinguishability-preserving distributed
samplers preserve the functionality of the protocols they compile if particular conditions are satisfied: sup-
pose that we deal with a protocol II relying on CRS. Suppose also that II implements a functionality F
and, more crucially, its simulator produces the simulated CRS before interacting with F (in other words, the
simulated CRS is independent of any information held by the functionality). Then, if we generate the CRS
of IT using an indistinguishability-preserving distributed samplers, the resulting protocol still implements F.
In [AWZ23a], we show that our hardness-preserving distributed sampler is also indistinguishability pre-
serving. The construction relies, however, on a short, reusable, unstructured CRS (this is unavoidable,
otherwise we would be able to obtain 3-round actively secure OT in the plain model [PVWO08, HV16]).

Theorem 1.1.9 (Informal version of Theorem 4.8.6). Assume the existence of subexponentially secure iO,
subexponentially secure multi-key FHE, ELFs and almost everywhere extractable NIZKs for NP. Then, there
exists an n-party indistinguishability-preserving distributed sampler for any efficient distribution D(1*).

Unbiased sampling with active security: coin tossing extension. In the last paper presented in
this thesis [ADIN24a], we go back to the question of implementing the functionality in Figure 1.1 with
guaranteed output in a presence of an active adversary corrupting a dishonest majority of participants. As
we have already explained, such functionality cannot be implemented in the plain model (nor if we rely on
CRSs or random oracles) due to Cleve’s impossibility [Cle86]. What happens however if we assume that
the parties have access to a copy of F, where U}, denotes the uniform distribution over {0, 1}* for a small
value k(\) = w(logA)? Does the impossibility still hold? The question is interesting as it is not hard to
imagine ways JFy, can be implemented: for instance, we can use the randomness produced by a beacon on
a blockchain, or we could rely on some physical device.

We started by considering the problem for D = U,,, where m(\) > k(\) is any polynomial function and
Uy, denotes the uniform distribution over {0, 1}™. We are essentially asking whether there is a way to extend
k(\) bits of unbiased randomness with security against active adversaries corrupting a dishonest majority
of participants. It turns out that this problem has already been studied; it is called coin tossing extension
(CTE) [BGR96, HMUO6]. Clearly, the question becomes trivial in the programmable random oracle model.
In the plain model, however, the problem turns out to be surprisingly interesting and elegant (we recall that,
as argued in the introduction, we cannot obtain a CTE protocol by simply expanding the string produced
by Fy, using a PRG).

In [HMUO6], Hotheinz, Miiller-Quade and Unruh presented a statistically secure, 1-round CTE protocol
in the standalone model (the authors considered only CTE with abort, not realising that their construction
has actually guaranteed output). The protocol achieves only O(log A\) stretch, meaning that in each protocol
execution, we extend the k(\) bits provided by Fyy, to k(A\) + O(log A) bits of unbiased randomness. If we
would like to produce w(log A) randomness, we would therefore need to repeat w(log \) sequential executions
of the protocol.

Is it possible to design O(1)-round CTE protocols with w(log \) stretch?

Coin tossing extension: positive results. In [ADIN24a], we showed that, if we restrict our security
analysis to efficient adversaries, the answer to the above question is (likely) yes. Our most important result
is the following.

Theorem 1.1.10 (Informal version of Theorem 5.5.3). Let m(\) and n(\) be any polynomial functions. Under
the hardness of learning with errors (LWE) with subexponential modulus-to-noise ratio [Reg05], there exists
a one-round, n-party CTE protocol with stretch m(X). The protocol requires no CRS and a single call to
Fu, . Furthermore, it is secure against adaptive corruption in the UC model.

As our second result, we introduce an algebraic framework where it is possible to build 1-round UC-secure
coin-tossing extension with arbitrary polynomial stretch. The framework, called hidden subgroup framework,
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consists of a group G hiding a smaller subgroup H (we require that the uniform distribution over G and H are
indistinguishable) and can be instantiated based on Paillier, on class groups, or on decisional Diffie-Hellman
(DDH). The resulting CTE protocol makes however use of a CRS.

Theorem 1.1.11 (Informal version of Theorem 5.6.4). Let m(X) and n(\) be any polynomial functions.
Assume the existence of simulation-extractable NIZKs for NP. Under the hardness of one of the following

o DDH over prime order groups [DHT76];
 quadratic residuosity (QR) and decisional composite residuosity (DCR) over the Paillier group [Pai99];
 hard subgroup membership (HSM) over class groups [CL15];

there exists a one-round, UC-secure, n-party CTE protocol with stretch m(A). The protocol requires a
(reusable) CRS and a single call to Fyy, .

The final positive result we present is an n-party CTE protocol with arbitrary stretch based on one-way
functions (OWFs). The constructions, however, requires O(n) rounds and is only standalone secure.

Theorem 1.1.12 (Informal version of Theorem 5.7.3). Let m(\) and n(\) be any polynomial functions. Under
the existence of OWFs, there exists a O(n)-round, n-party CTE protocol with stretch m(X). The protocol
requires a single call to Fy, .

Coin tossing extension: negative results. In [ADIN24a], we prove also a lower-bound for statistical
security in the standalone model with black-box simulation.

Theorem 1.1.13 (Informal version of Theorem 5.2.6). Any R-round CTE protocol with statistical security
in the standalone model with black-box simulation has O(R - log \) stretch.

The result therefore proves that the CTE construction in [HMUOQ6] is optimal.

On the relation between coin tossing extension and randomness extractors. Coin tossing ex-
tension protocols are tightly related to seeded randommness extractors. A randomness extractor consists of a
deterministic function that transforms, with the aid of a short, uniformly random seed, any sufficiently-high
entropy material into a long (essentially) random string of bits. More specifically, we can regard a CTE
protocol as a randomness extractor for the class of entropy sources outputting the transcript of a CTE
execution where at least one party behaves honestly. The seed consists in the output of the last call to the
auxiliary functionality F74,. Randomness extractors necessitate the seed to be independent of the material
produced by the entropy source. This property is ensured by the following result: in a CTE protocol, any
subsequent round of interaction after the last call to F, is useless.

Theorem 1.1.14 (Informal version of Theorem 5.4.3). Let II be a coin tossing extension protocol. Let I be
the protocol in which all parties behave as IT until the last call to F,, , after which all parties stop. Then IT’
is still a secure coin tossing extension protocol.

We observe that the extractors we obtain from CTE protocols satisfy an interesting, somewhat surprising
property: given a description of the entropy source and a random sample r in the output space, we are able
to simulate an extractor execution producing r. We call extractors of this kind explainable extractors. By
applying this observation on the construction of Theorem 1.1.10, we obtain the following corollary.

Corollary 1.1.15 (Informal version of Corollary 5.5.7). Consider the class of entropy sources S producing
the transcript of a protocol where all parties simultaneously broadcast a unformly random string and a PPT
adversary can maliciously corrupt a dishonest majority of participants (but not their totality).

Under the hardness of LWE with subexponential modulus-to-noise ratio, there exists an explainable
extractor for S.
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Unbiased sampling from any distribution. Finally, in [ADIN24a], we abandoned the study of coin
tossing and we reverted back to the more general case of securely sampling from any arbitrary distribution
D(1*). We have seen that, with the help of J,, it is possible to circumvent Cleve’s impossibility [CleS6],
producing randomness free from any form of adversarial influence. We ask:

Is it possible to implement the functionality Fp in Figure 1.1 with the help of Fy ?

In other words, if we keep relying on the help of Fy, are we able to securely produce samples from any
distribution D(1*) leaving no influence to the adversary? By combining the techniques we used to build
1-round CTE with indistinguishability-preserving distributed samplers, we show that the answer is yes.

Theorem 1.1.16 (Informal version of Theorem 5.9.5). Assume the existence of indistinguishability-preserving
distributed samplers, iO and injective, length-doubling PRGs. Then, there exists a one-round, n-party
protocol securely realising the functionality Fp (see Figure 1.1) in the Fy,-hybrid model. The protocol
guarantees UC security against an active PPT adversary statically corrupting up to n — 1 parties.

Sampling correlated randomness in one round: public-key PCFs. We now move to the question
of generating correlated randomness in one round. In other words, we study public-key PCFs: one round
protocols for the generation of large amount of correlated randomness with sublinear communication in the
size of the outputs.

In [ASY22a], we showed how to build public-key PCFs from distributed samplers, iO and public-key
encryption. We considered two definitions for public-key PCFs. The first one is based on the concept of
reverse samplability [BCGT19b]: we say that a form of correlated randomness is reverse-sampleable if, for
any subset of corrupted parties, it is possible to simulate the correlated material of the honest parties from
that of the corrupted players. Such simulator is called the reverse-sampler. Following this blueprint, we
defined the security of the first family of public-key PCFs asking that the correlated material they produce
for the honest parties is indistinguishable from the one we obtain by reverse-sampling the output of the
corrupted players. In other words, we are implementing the functionality that lets the adversary choose the
correlated material obtained by the corrupted players and then uses it to reverse-sample the output of the
honest parties. For many applications of correlated randomness, this definition is often enough to guarantee
security.

Theorem 1.1.17 (Informal version of Theorems 2.6.8, 2.6.9 and 2.6.10). Assume the existence of non-rushing
semi-malicious, n-party distributed samplers for any distribution, (polynomially secure) iO and public-key
encryption (PKE). Then, there exits a non-rushing semi-malicious, n-party, public-key PCF for any reverse-
samplable correlation.

The construction can be upgraded to active security by additional assuming the existence of NIZKs
for NP and moving to the programmable random oracle model. Furthermore, in case the correlation is
reverse-samplable with subexponential security, we can obtain actively secure public-key PFCs without
random oracles by relying on subexponentially secure distributed samplers, subexponentially secure iO,
subexponentially secure PKE and polynomially secure NIZKs.

In all these constructions, the communication is logarithmic in the size of correlated material they pro-
duce.

The second class of public-key PCFs we studied in [ASY?22a] guarantees a stronger form of security: we
implement the functionality that samples the correlated material and distributes it to all participants leaving
no influence to the adversary. In other words, the correlated material obtained by the parties, including that
of the corrupted players, looks like as if it was generated by the targeted correlation function. Unfortunately,
this type of public-key PCFs can achieve sublinear communication in the size of the outputs only in the
random oracle model [BCGT19b]. If the oracle is programmable, however, it is possible to design public-key
PCFs that are tailored to no specific correlation: the latter can be chosen, after the parties have sent their
messages. We call this primitive an ideal public-key PCF.

Theorem 1.1.18 (Informal version of Theorem 2.7.8). Assume the existence of active, n-party distributed
samplers for any distribution (implementing the functionality in Figure 1.2), adaptive universal samplers
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[HJKT16] and public-key encryption (PKE). Then, there exits an active n-party, ideal public-key PCF in
the programmable random oracle model.

1.1.2 Personal Contribution

In this section, I will summarise, as truthfully as I can, my contribution to the works that are part of this
thesis. As a disclaimer, however, the perspective that the PhD school forces me to take here is far from my
personal and moral view on the matter: I am not sure I believe in the concept of merit, and I am even more
sceptical of the fact that merit can be quantified, added and divided as if it was a material thing. I prefer
to view “my” research as the result of the work that the whole society carried out over ages, instead of just
three-four names listed under the title of the work.

I believe that focusing on the researcher instead of the research (as I am forced to do below) promotes
misleading and harmful perspectives of individualism and self-narration. These views then ripple throughout
the world of research in many different forms, such as impostor syndrome, anxiety, objectification (researchers
are more than their mere abilities), passivity.

If you believe that this society needs fewer stories of heroes and more stories of kind collaboration, as
Ursula Le Guin argues in “The Carrier Bag Theory of Fiction” [Guil9], you are invited to skip the following
paragraphs and read about who contributed to this work in the acknowledgement section.

A summary of personal contributions. All papers were written entirely by me with minor corrections
from the other authors. The exceptions are all introduction sections and some of the technical overviews:
Section 2.1 [ASY22a, Section 1] (written by Sophia Yakoubov), Sections 1, 2.2 and 2.3 of [AOS23] (written
mostly by Peter Scholl with minor contributions from Maciej Obremski and myself), Section 1 (written by
Mark Zhandry) and Section 2 (equal contribution between Mark Zhandry and myself) of [AWZ23a], Section
1 of [ADIN24a] (written by Jack Doerner).

The work in [ASY22a] comes from an intuition of Peter Scholl and Sophia Yakoubov about using iO
and multi-key FHE to build public-key PCFs. The introduction of distributed samplers, their definition,
the semi-honest construction and its security proof are all due to me. The same holds for the introduction,
definition, construction and security proof of anti-rusher compilers. The ideas on how to define public-key
PCFs and build them from distributed samplers were an equal contribution between Peter Scholl and I. The
relative security proofs were my contribution.

The intuition behind the lower bounds presented in [AOS23] is due to me, whereas the question of
building party-dynamic distributed samplers was proposed by Peter Scholl. The impossibility results for
active distributed samplers were proved by myself with the support of Maciej Obremski. The introduction,
the definition and construction of unbounded distributed samplers are due to myself (unfortunately, we
discovered that some of the techniques had already been used in [GS18a]). The same holds for the definition
and construction of party-dynamic distributed samplers.

In [AWZ23a], the introduction and definition of hardness-preserving distributed samplers is due to Mark
Zhandry. The same was for the intuition that the primitive was connected to extremely lossy functions,
and almost-everywhere extractable NIZKs could be built by relying on the trick of [BCP14]. The definition
of indistinguishability-preserving distributed samplers, lossy distributed samplers and all constructions and
proofs are my own contribution. The question of building CRS-less NIZKs with security against uniform
adversaries, as well as the basic blueprint was proposed by Brent Waters. The rest of constructions and
security proofs were my contribution.

In [ADIN24a], the study of coin-tossing extension was proposed by Yuval Ishai. All constructions, lower
bounds and proofs were my own contribution. The only exception was the intuition behind explainable
extractors and their relationship with CTE, which is due to Yuval Ishai. Lemma 5.8.1 and its proof is due
to Varun Narayanan.

1.1.3 Related Work

We now give an overview of related work.

14



Non-interactive MPC. Non-interactive MPC (NIMPC) [BGI*14a, HIJT17] allows the evaluation of
a deterministic function f on the inputs provided by the parties using a single round of interaction. It
could seem that using this primitive, we can immediately obtain distributed samplers: why not to evaluate
the function that XORs the strings input by the parties and then uses the result as randomness for the
distribution D(1*)? This idea does not work as non-interactive MPC provides too weak security guarantees.
This is due to an attack the cannot be prevented in any one-round protocol: the residual function attack.
Specifically, an adversary can always rerun the protocol in its head changing the inputs of the corrupted
parties, while keeping the messages of the remaining participants unvaried. Since the protocol requires
a single round, at the end of this imagined execution, the adversary learns the output of the modified
evaluation. In other words, by repeatedly applying this attack on the naive sampling protocol, the adversary
can obtain many correlated samples. For some distributions D(1%), this could be a serious problem. One
could therefore try to find a more clever way to generate the randomness we feed into D(1*). Instead of
XORing the inputs of the parties, we could perform more complex operations so that even if the adversary
reruns the protocol in its head, the randomness we feed into D(1*) looks independent of the one used in
the previous imaginary executions. There is however another problem: non-interactive MPC relies on a PKI
even in the case of semi-honest security. The latter ensures that in the imaginary executions, the adversary
can only regenerate the messages of the corrupted players. Since we are interested in building semi-honest
distributed samplers in the plain model, we need to try something new.

Non-interactive key exchange. Non-interactive key exchange (NIKE) [DH76, KRS15] allows a set of
parties to agree on a secret random key using a single round of interaction. The primitive differs from
distributed samplers from three points of view. The first one is the distribution of the produced sample:
while NIKEs generate a uniformly random string of bits, distributed samplers tackles generic distributions.
The second big difference is that distributed samplers produce public samples: their output is computable
also by external entities that just happen to see the messages exchanged by the parties. Finally, while
a NIKE guarantees that its output looks random only if all participants are honest, distributed samplers
provide much stronger security guarantees: their output looks random even if there exists only one honest
player.

Universal Samplers. A universal sampler can be viewed as a cryptographic object allowing the generation
of samples from the distributions it receives as input. The primitive was introduced by Hofheinz et al.
[HJK™16] building it from indistinguishability obfuscation. Universal samplers come in two flavours: selective
universal samplers, which guarantee security only for a single distribution chosen before the generation of
the sampler, and adaptive universal samplers, which allow the secure generation of arbitrarily many samples
from adaptively chosen distributions (adaptive universal samplers can exist only in the random oracle model
[HIKT16]).

There are two major differences between universal samplers and distributed samplers: the first one is
that universal samplers guarantee security only if they are generated by a trusted setup, whereas distributed
samplers are, as the name suggest, distributed, ensuring the security of their outputs as long as at least
one party is honest. The second main difference is that universal samplers are indeed universal: they are
not tailored to any specific distribution. Distributed samplers on the other hand are interesting even if the
distribution of the samples is fixed. Of course, we can also consider a stronger definition of distributed
samplers in which the parties can sample elements from any distribution. This primitive exists, it is called
distributed universal samplers and it can be trivially obtained by using a distributed sampler to produce a
universal sampler.

Spooky encryption. In [DHRWI16], Dodis et al. introduced spooky encryption. This corresponds to a
multiparty version of FHE in which the parties can obtain the output of the function evaluation immediately
after receiving the encryption of the inputs. Specifically, the primitives allows to perform homomorphic
operations on ciphertexts generated under independent public keys. Then, using their secret keys and
without the need for any interaction, the parties can retrieve their output.
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Due to the one-round nature of the primitive and the issue with residual function attacks, spooky encryp-
tion only supports the evaluation of a restricted class of randomised functions: in order to preserve semantic
security, it is fundamental that the outputs of any subset of parties leak no information about the inputs of
the remaining players.

Currently, we know how to build spooky encryption for functions outputting random additively secret-
shared values depending on the inputs. This construction is based on LWE with subexponential modulus-to-
noise ratio and relies on an unstructured CRS [DHRW16]. Furthermore, in the two party setting, we know
how to build a more generic form of spooky encryption based on (among other primitives) subexponentially
secure i0 [DHRW16].

One could imagine to build distributed samplers from spooky encryption by evaluating the inputless
function described by D(1*). This however does not necessarily give a distributed sampler: spooky encryp-
tion only guarantees privacy of the inputs, but nothing prevents it from revealing information about the
randomness input in D(17).

Pseudorandom correlation generators and pseudorandom correlation functions. Pseudorandom
correlation generators (PCGs) [BCGT19b, BCGT19a, BCGT20b] and pseudorandom correlation functions
(PCFs) [BCG™20a] allow n parties to securely generate large amounts of correlated randomness by locally
expanding small seeds. In the case of PCGs the expansion of the seed occurs all at once, producing a
polynomial amount of correlated material. In the case of PCFs, the expansion takes place in a one by one
fashion, similarly to PRFs. As a consequence, PCFs may have no polynomial bound on the amount of
produced material.

PCGs and PCFs can be easily transformed into secure, sublinear communication MPC protocols for the
generation of large amounts of correlated material: it is sufficient to design MPC protocols that generate
and distribute the correlated seeds with linear communication in their size. Since the size of the seeds is
sublinear in the amount of material they produce, we obtain the protocol we desire.

Setting up the seeds in a single round is however tricky. When this is possible we obtain a public-key
PCFs. The name is due to the fact that the messages exchanged in the only round of interaction act as a
public key, whereas the randomness used for their generation acts as the private counterpart. At the time
our research began, public-key PCFs were known only for OT'” and VOLE'® correlation based on Paillier
[OSY21], and for more general additively shared correlation based on spooky encryption [DHRW16]*°. In
this thesis, we wonder whether public-key PCFs can be build for more generic forms of correlation.

Coin tossing and coin tossing extension. A coin tossing protocol [Blu82] allows a set of parties to
agree on a uniformly random string of bits. Due to the large use of public randomness in cryptography, the
primitive has captured the attentions of researchers for many years.

The question becomes particularly interesting in the malicious setting (semi-honest coin tossing is trivial).
While the primitive is well understood in presence of an honest majority, the dishonest majority setting is
burdened by Cleve’s impossibility result [Cle86]: for every R-round coin tossing protocol, there exists a PPT
adversary that biases the output by at least O(1/R). For years, the community has therefore tried to find
new ways to get around the impossibility, either by consider coin-tossing with abort [Blu82, Lin03] or by
considering new models such as time-based cryptography [RSW00, BBBF18].

In this thesis, we study coin tossing extension (CTE), which tries to circumvent Cleve’s impossibility by
relying on an auxiliary resource providing all participants with a random, unbiased-but-short string of bits.
This primitive was introduced by Bellare et al. [BGR96] and later studied by Hofheinz et al. [HMUO06]. In
this last work, the authors showed a series of lower bounds and upper bounds: they proved the impossibility
of CTE whenever the auxiliary resource provides O(log A) bits of randomness, the impossibility of perfectly

TTn OT correlation a party obtains a random “shift” A € {0,1}* and random elements K7i,..., Kz € {0,1}*. The other
party obtains random bits by,...,br, € {0,1} and strings M, ..., My where M; = K; ®b; - A for every i € [L].

18In VOLE correlation a party obtains a random “shift” « in a ring R and random elements a1, ...,a;, € R. The other party
obtains random elements z1,...,z; € R and values b1, ...,br where b; = a; ® z; - a for every i € [L].

19 Additively shared correlation consists of any form of correlation in which the parties obtain random additive secret-sharing
of correlated values.
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secure CTE in the standalone model and of statistical CTE with UC security. On the positive side, Hofheinz
et al. present a statistically secure, 1-round CTE protocol with O(log A) stretch in the standalone model
[HMUO6].

In this thesis, we try to study coin tossing extension protocols with w(logA) stretch and O(1) rounds.
Moreover, we study whether the auxiliary functionality can be used to produce secure unbiased sample from
arbitrary distributions.

Indistinguishability obfuscation. Indistinguishability obfuscation [BGIT01, GGH'13, JLS21] is one of
the strongest tools used in cryptography today. The primitive specifies how to “scramble” any given circuit
into a new circuit (often called program) computing exactly the same function. The resulting object is
however so muddled that it is infeasible to recognise the circuit it was originated from.

Distributed samplers are strongly related to obfuscation: all the constructions we present will make heavy
use of this primitive. And this is no coincidence: we show that by using semi-honest distributed samplers
along with LWE, we are able to build indistinguishability obfuscation. This (never published) result is
obtained following the blueprint of Wee and Wichs [WW21]. We sketch our argument in Section 1.2.2.

1.2 Technical Overview

We now present a technical overview of the results presented in this thesis.

1.2.1 An Informal Discussion of Preliminaries

In this section, we present an informal description of cryptographic notions and primitives we used in our
work. We recall that A denotes the security parameter2?. All protocols, primitives and random variables will
be parametrised by A. We say that a function e(\) is negligible if ¢(A\) = A=*(). For any ¢ € N, we use [/]
to denote the set {1,2,...,¢}. All logarithms will be in base 2. We use 1* to denote the security parameter
in unary notation (i.e. a string of A bits all set to 1). We use = < y or = < A(y) to assign y or the output
of the deterministic algorithm A(y) to the random variable 2. We use instead = < X or z < A(y) to assign
a uniformly random sample from a set X or the output of the randomised algorithm A(y).

Security games and advantage. The security of cryptographic primitives is often formalised by relying
on security games (parametrised by the security parameter A) between an “honest” entity called the challenger
and an “evil” entity called the adversary. Typically, the goal of the game is for the adversary to find an
object hidden in a large domain or to perform an almost impossibile task (search game) or to guess a bit
chosen at random by the adversary (decision game). We measure the success of an adversary using the notion
of advantage. In the case of search games, the advantage is defined as the probability that the adversary
finds one of the hidden objects or manages to perform the infeasible task. In the case of decision games, the
advantage is defined as the distance between the probability of the adversary guessing the bit sampled by
the challenger and 1/2. Typically, we say that a game is hard if the advantage is negligible in A for every
adversary in the considered class.

Indistinguishability and hybrid arguments. We say that two random variables Xy and X; are in-
distinguishable, if it is impossible to distinguish between them with non-negligible advantage. Formally,
we consider the decision game in which the challenger samples a random bit b < {0,1} and provides the
adversary with a sample from X;,. The two variables are statistically indistinguishable if all adversaries
(also computationally unbounded ones) guess b with negligible advantage. We say that the variables are
computationally indistinguishable if the advantage is negligible for all probabilistic, polynomial time (PPT)
adversaries.

20 A security parameter describes the computational power of the protocol participants and the adversary.
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Indistinguishability is often at the base of hybrid arguments: suppose that we deal with a construction
that makes use of a sample from Xy. We can consider the “hybrid” construction in which we substitute the
sample from X, with a sample from X;. Since Xy and X; are indistinguishable, the hybrid construction
will behave equivalently to the original one. By repeating this procedure multiple times in a cascade of
hybrids, we can slowly switch the pieces of the construction until we reach a version for which it is easier to
analyse the security properties. The distinguishability advantage between the starting point and the final
point will be roughly the sum of all distinguishing advantages between pairs of subsequent hybrids, so as
long as their number is polynomial, the final version of the construction will be indistinguishable from the
original one (this is because, for any constant ¢, A - A=) = A\=«(1))If instead the number of hybrids is
superpolynomial, we need to require the average advantage between subsequent hybrids to be smaller than
negligible: if there are L()) hybrids, we need the average advantage to be L(A\)~!- A=« This is why, in
this thesis, we often rely on subexponentially secure primitives, i.e., there exists a constant € > 0 for which
the advantage of the primitive against O(2*")-time adversaries is at most 27",

MPC protocols and security with black-box simulation. In all multiparty computation protocols
we describe in this chapter, we denote the number of participants by n. We denote the i-th party by P;.

The security of MPC protocols is usually defined using a real world/ideal world paradigm: in the real
world, we consider the interaction of the protocol with an adversary. The adversary has the ability to corrupt
a subset of participants and learn all their secrets. Furthermore, if the adversary is active (in contrast with
semi-honest adversaries), the adversary can also control the operations of the corrupted parties, making
them misbehave according to its will. The adversary always gets to choose the inputs of the honest parties
(but not their actions), moreover it gets to see their output. We denote the set of corrupted parties by C
and the set of honest parties by H.

In the ideal world, the adversary interacts with a functionality and a simulator. The functionality models
the ideal execution of the protocol, controlling the outputs of the honest parties and what information
gets leaked to the adversary. For instance, if the protocol computes a function f, the functionality could
gather the inputs of all parties x1,...,2, and output f(x1,...,2,) to all participants without revealing
any additional information. The simulator mediates the communications between the adversary and the
functionality, trying to simulate the real execution of the protocol. Moreover, in case the simulator does not
like how the interaction is developing, it can “rewind” the adversary to a previous state and replay the part
of the protocol until it is satisfied with the result.

Commonly, security with black-box simulation is defined by asking for the existence of a polynomial-
time simulator for which the information output by the adversary after interacting with the ideal world is
indistinguishable from the one it outputs after interacting with the real world. In stronger security models,
such as UC security, we require the simulation to be straightline: no rewinding is allowed!

With this indistinguishability-based definition, we are essentially saying that any attack the adversary
succeeds in performing against the protocol, can be converted into an attack against the ideal functionality,
a much simpler object whose security properties are significantly easier to analyse. If any vulnerability were
to be found in the protocol, it would be an intrinsic vulnerability: it would not be that the protocol is not
secure enough, the issue would be that what we are trying to compute is insecure in the first place!

In this thesis, we mostly deal with protocols in which the adversary is computationally bounded: it must
run in polynomial time. We talk about computational security when the ideal world and the real world
are only computationally indistinguishable. We talk about statistical security if instead the outputs of the
adversary in the two worlds are statistically indistinguishable. We talk about superpolynomial simulation if
the simulator is allowed to run in time O(T') where T is a superpolynomial function of A.

Computational assumptions. In this thesis, we sometimes rely on well-known cryptographic assump-
tions such as learning with errors (LWE) [Reg05], decisional Diffie-Hellman (DDH) [DH76] and quadratic
residuosity (QR) and decisional composite residuosity (DCR) over the Paillier group [Pai99].

e Learning with errors. Let q, K, M, B be positive integers where M can be greater than K. Let x a
distribution over ZM where its samples have norm at most B. The LWE assumption takes place over a
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K-dimensional lattice over Zfl\/l described by a matrix A & Zé\/[ XK Tn particular, the assumption states
that, for s <& Zf and e < y, the value A - s + e looks indistinguishable from the uniform distribution

over Zf]‘/f , even when A is public. The low-norm distribution y is usually instantiated using a discrete
Gaussian. We refer to the quotient ¢/B as the modulus-to-noise ratio.

Given a modulus p < ¢ and an element z in Z,, we sometimes “round down” x to the modulus p. This
means computing the value ¢ € Z, that minimises |z — ¢ - ¢/p|.

e Decisional Diffie-Hellman. Suppose that G is a large, abelian, multiplicative group generated by an
element g of order p (usually p is a prime). We say that DDH holds over G if, for random a, b, ¢ & [p],
the tuples (g, 9%, g%, g*®) and (g, g%, g%, g°) are computationally indistinguishable.

e Quadratic residuosity and decisional composite residuosity over the Paillier group. Let N be the
product of two random, unknown, large primes p and gq. The Paillier group is defined as Z%;.. The QR
assumption states that, for a random z ¢ 2, it is hard to distinguish between = and 22. The DCR
assumption, in a similar way, states that it is hard to distinguish between x and z%.

It is easy to see that the order of the Paillier group is N - ¢(N) where ¢(N) = (p —1) - (¢ — 1) denotes
Euler’s totient function. In other words, the order of the group is always a multiple of 2N. From this
we understand that QR and DCR can hold only against computationally bounded adversaries: the
squares of Z%, form a proper subgroup and so do the N-th powers. Finally, we observe that if p and
q are random safe primes, i.e., p = 2p' + 1 and ¢ = 2¢’ + 1 where p’ and ¢’ are themselves primes,
the Paillier group is isomorphic to the direct product of additive groups Zs X Zo X Zy X Zyr.q. The
subgroup of 2/N-th powers is therefore isomorphic to Z,.q/, which is cyclic. Under both QR and DCR,
a random 2N-th power is computationally indistinguishable from z < VANEY

One-way functions. A one-way function (OWF) consists of a function f that is hard to invert on random
instances in its image: given a random y, no PPT (probabilistic, polynomial time) adversary is able to
retrieve any x such that f(xz) =y (except with negligible probability).

Puncturable PRFs. A puncturable PRF [KPTZ13, BW13, BGI14b] consists of a PRF where we can
erase all information concerning the evaluation at a particular point from the key. The key obtained is this
way is called a punctured key and it allows the correct evaluation of the PRF at all positions except the
punctured one. Moreover, even given the punctured key, the output of the original PRF at the punctured
position looks random.

Hash functions. An hash function is a keyed function Hyy that maps large inputs into short digests (or
hashes). The primitive guarantees that, if hk is sampled at random, it is infeasible that a PPT adversary
manages to find a collision, i.e., different strings 1 # xo such that Hpx(x1) = Hnk(z2).

Non-interactive commitments. Non-interactive commitments allow a protocol participant to commit
to a value without revealing it to anybody else (hiding property of the commitment). This is done by
broadcasting an object called the commitment. At a later point in time, the party can reveal the chosen
value along with a proof (often called opening). This proof can be validated along with the commitment
by any bystander. The procedure always succeed, if the committer behaved honestly. Furthermore, if the
committer misbehaves and broadcasts a value different from the one it chose earlier, the validation always
fails, even if the commitment was maliciously generated (biding property of the commitment).

Public-key encryption. Public-key encryption (PKE) [RSA78, DH76] consists of an encryption scheme
where the key (i.e. the information that allows encryption and decryption) is split in two parts: a public key
pk and a secret key sk (also called private key). The encryption procedure requires only the knowledge of the
public key pk. Decryption instead requires using sk. This primitive guarantees the privacy of the encrypted
communication even if the public key becomes public.
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Fully homomorphic encryption. Fully homomorphic encryption (FHE) [Gen09, GSW13] consists of a
public-key encryption scheme in which it is possible to apply homomorphic operations on the ciphertexts: if
¢ is an encryption of x, by homomorphically applying a function f on the ciphertext, we obtain an encryption
of f(x), without having to know z or the secret key.

Multi-key FHE. Multi-key FHE [LTV12, MW16, AJJM20] consists of a form of FHE that allows homo-
morphic operations on ciphertexts encrypted under different public keys: given ciphertexts cq, ..., ¢, under
public keys pkj,...,pk,, where ¢; hides a value z;, we are able to obtain a “joint ciphertext” encrypting
f(z1,...,2,). The decryption of the joint ciphertext is performed in two phases: first each participant per-
forms a partial decryption using their secret key, then the partial plaintexts are pooled together to reconstruct
the output.

Identity-based encryption. Identity-based encryption (IBE) [Sha84, ABBI10] is a form of PKE where
the messages are encrypted under the identity of the recipient. Specifically, for every identity id, there exists
a secret key skiq that allows the decryption of any ciphertext ¢ produced under id. The knowledge of secret
keys for any other identities does not provide any help in decrypting c.

Non-interactive zero-knowledge proof. A non-interactive zero-knowledge proof (NIZK) is an object
that allows proving any statement to an external entity without revealing any additional information. For-
mally, the primitive is tailored to an NP relation R?' and always relies on a CRS. A prover knowing a pair
(z,w) € R can generate a proof 7 for the statement x. Any other entity (called verifier) can check the
validity of the proof 7. If the procedure succeeds, the verifier can be sure of the existence of a witness w
for z, ie., (z,w) € R (soundness of the NIZK). The primitive also guarantees zero-knowledge: the proof =
leaks no information about the witness w, nor anything else that cannot be computed directly from x. This
property is formalised by relying on a simulator: we ask that no PPT adversary can distinguish between
proofs that are generated following the protocol and simulated proofs that are produced using a trapdoor
hidden in the CRS but no witness.

We say that a NIZK is extractable if it is possible to use the trapdoor hidden in the CRS to extract a
witness from any valid proof produced by the adversary. In other words, given a valid proof 7 for a statement
x, we are able to extract a witness w such that (z,w) € R. We say that a NIZK is simulation-extractable if
this property holds even if the adversary is helped in its task by an oracle providing simulated proofs.

Non-interactive witness indistinguishability. A non-interactive witness-indistinguishable proof
(NIWTI) can be viewed as a NIZK satisfying soundness and a weaker form of zero-knowledge: we require
that for any statement z having multiple witnesses, it is infeasible to tell which witness was used for the
generation of the proof. Notice that if the witness w is unique, it is totally fine for a NIWI to just leak w.
Unlike NIZKs, it is possible to build NIWIs that do not use any CRS [BOV03, GOS06a, GOS06b, BP15].

Shannon entropy, strong chain rule and mutual information. Entropy measures the amount of
information contained in a random variable. The notion is tightly connected to the unpredictability of the
value the variable assumes. There exist many different definitions of entropy. The most famous is perhaps
Shannon’s entropy [Sha48]:

H(X) := = > Pr[X = 2] - log(Pr[X = z]).

It is possible to prove that the Shannon entropy H(X) expresses the size of the optimal representation for
X. In particular, if X is a distribution over a set of cardinality ¢, H(X) < log .

21 An NP relation R consists of a set of pairs (x,w), for which there exists a polynomial-time algorithm that correctly classifies
whether (z,w) € R or not. We call z the statement and w the witness.
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Given random variables X and Y, the conditional Shannon entropy H(X|Y) measures the amount of
information contained in X but not in Y. The quantity is defined as

HX[Y) ==Y ) Pr[X =2,V =y] - log(Pr[X = z]Y =y]).

Shannon’s entropy and conditional Shannon entropy are linked by an important property called the strong
chain rule: for any variables X and Y, H(X,Y) = H(X|Y) + H(Y)?2.

This fundamental equality led the way to the introduction of new information measures. For instance,
the mutual information 1(X;Y") := H(X) — H(X]Y) measures the amount of information contained in both
X and Y. We can also define the conditional mutual information |(X;Y|W) := H(X|W) — H(X|Y,W): it
measures the amount of information contained in both X and Y but not in W. Even more generally, we can
define I(X;Y; Z|W) := I(X;Y|W) — (X;Y|Z,W). This can be viewed as the information simultaneously
contained in all of X, Y and Z but not in W.

Min entropy. Min entropy provides another measure of unpredictability. Given a distribution X, we
denote the min-entropy of X by Hoo(X) := — max, log(Pr[X = z]). In other words, if Hoo(X) > ¢, it means
that max, Pr[X = x] < 27! Tt is possible to prove that, for any variable X, we have Ho (X) < H(X).

Yao entropy. Yao entropy Hyao(X) [Yao82] measures how much a random variable can be compressed
in polynomial time without losing information. The notion is formalised using a pair of deterministic
polynomial-time algorithms (c¢,d). The first algorithm is called the compressor, takes as input a sample
from the random variable X and outputs a compressed representation s. The second algorithm is called the
decompressor, it takes as input s and its goal is to reconstruct the original sample from X.

As we did for Shannon’s entropy, we can generalise the notion: the conditional Yao entropy Hy,o (X 1Y)
is defined similarly to Hyao(X), however, this time the compressor and the decompressor are aided in their
task by a sample from Y (which may be correlated to X).

Lossy trapdoor functions. A lossy trapdoor function [PWO08] consists of a function with two indistin-
guishable modes of operation: injective mode and lossy mode. When the function is in injective mode,
each element in its domain is mapped into a different value in the image. Moreover, using a trapdoor, it is
possible to efficiently invert the function. Notice that in an injective mode trapdoor function, the image has
the same size 